On Low Mach Number Preconditioning of Finite Volume Schemes
A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments, as well as by analysis, that the preconditioned scheme yields a physicall...
Gespeichert in:
Veröffentlicht in: | PAMM 2005-12, Vol.5 (1), p.759-760 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 760 |
---|---|
container_issue | 1 |
container_start_page | 759 |
container_title | PAMM |
container_volume | 5 |
creator | Birken, Philipp Meister, Andreas |
description | A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments, as well as by analysis, that the preconditioned scheme yields a physically corrected pressure distribution and combined with an explicit time integrator it is stable if the time step Δt satisfies the requirement to be O(M 2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Δt = O(M ),M → 0, though producing unphysical results. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pamm.200510354 |
format | Article |
fullrecord | <record><control><sourceid>istex_swepu</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_200510354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_HHZX4D4F_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2814-6cf096010c48e6e62ef560d39a23f01de3af251a1d4dd9ee16216ea39f75d1273</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKtXz_kDqTv7lQZPpdpW6Bf4iZdhm8za1SYp2Ybaf29KpXjzMMwc3udheIPgGlgHGOM3a5PnHc6YAiaUPAlaoCGOYqbh9M99Hlx4_9nkQQvWCm5nRTgut-HEpMtwWucLqsJ5RWlZZG7jysIVH2Fpw4Er3IbCl3JV5xQ-pkvKyV8GZ9asPF397nbwPLh_6o-i8Wz40O-No5R3QUY6tSzRDFgqu6RJc7JKs0wkhgvLICNhLFdgIJNZlhCBbn4jIxIbqwx4LNrB-OD1W1rXC1xXLjfVDkvjcFWvm1k0g55QZGC7sQIUjRmlXChMuOLYWJIYQEqQSaPrHHRpVXpfkT0KgeG-Sdw3iccmGyA5AFu3ot0_aZz3JpO_bHRgnd_Q95E11RfqWMQKX6dDHI3e3-SdHKAUP5LXhDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Low Mach Number Preconditioning of Finite Volume Schemes</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Birken, Philipp ; Meister, Andreas</creator><creatorcontrib>Birken, Philipp ; Meister, Andreas</creatorcontrib><description>A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments, as well as by analysis, that the preconditioned scheme yields a physically corrected pressure distribution and combined with an explicit time integrator it is stable if the time step Δt satisfies the requirement to be O(M 2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Δt = O(M ),M → 0, though producing unphysical results. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.200510354</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>PAMM, 2005-12, Vol.5 (1), p.759-760</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2814-6cf096010c48e6e62ef560d39a23f01de3af251a1d4dd9ee16216ea39f75d1273</citedby><cites>FETCH-LOGICAL-c2814-6cf096010c48e6e62ef560d39a23f01de3af251a1d4dd9ee16216ea39f75d1273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.200510354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.200510354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/3d1f8751-33f0-44b5-9252-127971144149$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Birken, Philipp</creatorcontrib><creatorcontrib>Meister, Andreas</creatorcontrib><title>On Low Mach Number Preconditioning of Finite Volume Schemes</title><title>PAMM</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments, as well as by analysis, that the preconditioned scheme yields a physically corrected pressure distribution and combined with an explicit time integrator it is stable if the time step Δt satisfies the requirement to be O(M 2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Δt = O(M ),M → 0, though producing unphysical results. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWKtXz_kDqTv7lQZPpdpW6Bf4iZdhm8za1SYp2Ybaf29KpXjzMMwc3udheIPgGlgHGOM3a5PnHc6YAiaUPAlaoCGOYqbh9M99Hlx4_9nkQQvWCm5nRTgut-HEpMtwWucLqsJ5RWlZZG7jysIVH2Fpw4Er3IbCl3JV5xQ-pkvKyV8GZ9asPF397nbwPLh_6o-i8Wz40O-No5R3QUY6tSzRDFgqu6RJc7JKs0wkhgvLICNhLFdgIJNZlhCBbn4jIxIbqwx4LNrB-OD1W1rXC1xXLjfVDkvjcFWvm1k0g55QZGC7sQIUjRmlXChMuOLYWJIYQEqQSaPrHHRpVXpfkT0KgeG-Sdw3iccmGyA5AFu3ot0_aZz3JpO_bHRgnd_Q95E11RfqWMQKX6dDHI3e3-SdHKAUP5LXhDA</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Birken, Philipp</creator><creator>Meister, Andreas</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D95</scope></search><sort><creationdate>200512</creationdate><title>On Low Mach Number Preconditioning of Finite Volume Schemes</title><author>Birken, Philipp ; Meister, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2814-6cf096010c48e6e62ef560d39a23f01de3af251a1d4dd9ee16216ea39f75d1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Birken, Philipp</creatorcontrib><creatorcontrib>Meister, Andreas</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Lunds universitet</collection><jtitle>PAMM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birken, Philipp</au><au>Meister, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Low Mach Number Preconditioning of Finite Volume Schemes</atitle><jtitle>PAMM</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2005-12</date><risdate>2005</risdate><volume>5</volume><issue>1</issue><spage>759</spage><epage>760</epage><pages>759-760</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments, as well as by analysis, that the preconditioned scheme yields a physically corrected pressure distribution and combined with an explicit time integrator it is stable if the time step Δt satisfies the requirement to be O(M 2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Δt = O(M ),M → 0, though producing unphysical results. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.200510354</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | PAMM, 2005-12, Vol.5 (1), p.759-760 |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_200510354 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | On Low Mach Number Preconditioning of Finite Volume Schemes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Low%20Mach%20Number%20Preconditioning%20of%20Finite%20Volume%20Schemes&rft.jtitle=PAMM&rft.au=Birken,%20Philipp&rft.date=2005-12&rft.volume=5&rft.issue=1&rft.spage=759&rft.epage=760&rft.pages=759-760&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.200510354&rft_dat=%3Cistex_swepu%3Eark_67375_WNG_HHZX4D4F_4%3C/istex_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |