Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices

In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2025-01
Hauptverfasser: Cui, Yuefeng, Wang, Likui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Optimal control applications & methods
container_volume
creator Cui, Yuefeng
Wang, Likui
description In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples.
doi_str_mv 10.1002/oca.3250
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_oca_3250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_oca_3250</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_oca_32503</originalsourceid><addsrcrecordid>eNqVzj8KwjAUgPEgCtY_4BHe6NL6kraos1VcCqLuIdZUIrWRvDj0Bp7Cw3kSLXgBp2_5hh9jE44RRxQzW6goFil2WMBxuQx5ypMuC5AncShwMe-zAdEVEec8FgHL9_b0IA9bEKDq87fv5ws2pvLaQabJXGoorYOdrRpv76aAQ0Ne3whODWSmUt7UF8iVd6bQNGK9UlWkx78O2XSzPq62YeEskdOlvDtzU66RHGXLlV-ubLnxH-sHAm9FmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Cui, Yuefeng ; Wang, Likui</creator><creatorcontrib>Cui, Yuefeng ; Wang, Likui</creatorcontrib><description>In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.3250</identifier><language>eng</language><ispartof>Optimal control applications &amp; methods, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_oca_32503</cites><orcidid>0000-0002-6718-1403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cui, Yuefeng</creatorcontrib><creatorcontrib>Wang, Likui</creatorcontrib><title>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</title><title>Optimal control applications &amp; methods</title><description>In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples.</description><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVzj8KwjAUgPEgCtY_4BHe6NL6kraos1VcCqLuIdZUIrWRvDj0Bp7Cw3kSLXgBp2_5hh9jE44RRxQzW6goFil2WMBxuQx5ypMuC5AncShwMe-zAdEVEec8FgHL9_b0IA9bEKDq87fv5ws2pvLaQabJXGoorYOdrRpv76aAQ0Ne3whODWSmUt7UF8iVd6bQNGK9UlWkx78O2XSzPq62YeEskdOlvDtzU66RHGXLlV-ubLnxH-sHAm9FmQ</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Cui, Yuefeng</creator><creator>Wang, Likui</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6718-1403</orcidid></search><sort><creationdate>20250102</creationdate><title>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</title><author>Cui, Yuefeng ; Wang, Likui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_oca_32503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yuefeng</creatorcontrib><creatorcontrib>Wang, Likui</creatorcontrib><collection>CrossRef</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yuefeng</au><au>Wang, Likui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2025-01-02</date><risdate>2025</risdate><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples.</abstract><doi>10.1002/oca.3250</doi><orcidid>https://orcid.org/0000-0002-6718-1403</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2025-01
issn 0143-2087
1099-1514
language eng
recordid cdi_crossref_primary_10_1002_oca_3250
source Wiley Online Library - AutoHoldings Journals
title Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%202%20and%20H%20%E2%88%9E%20Filter%20Design%20for%20Polytopic%20Systems%20by%20Dilating%20Matrices&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Cui,%20Yuefeng&rft.date=2025-01-02&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.3250&rft_dat=%3Ccrossref%3E10_1002_oca_3250%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true