Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices
In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that mor...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2025-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Optimal control applications & methods |
container_volume | |
creator | Cui, Yuefeng Wang, Likui |
description | In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples. |
doi_str_mv | 10.1002/oca.3250 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_oca_3250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_oca_3250</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_oca_32503</originalsourceid><addsrcrecordid>eNqVzj8KwjAUgPEgCtY_4BHe6NL6kraos1VcCqLuIdZUIrWRvDj0Bp7Cw3kSLXgBp2_5hh9jE44RRxQzW6goFil2WMBxuQx5ypMuC5AncShwMe-zAdEVEec8FgHL9_b0IA9bEKDq87fv5ws2pvLaQabJXGoorYOdrRpv76aAQ0Ne3whODWSmUt7UF8iVd6bQNGK9UlWkx78O2XSzPq62YeEskdOlvDtzU66RHGXLlV-ubLnxH-sHAm9FmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Cui, Yuefeng ; Wang, Likui</creator><creatorcontrib>Cui, Yuefeng ; Wang, Likui</creatorcontrib><description>In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.3250</identifier><language>eng</language><ispartof>Optimal control applications & methods, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_oca_32503</cites><orcidid>0000-0002-6718-1403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cui, Yuefeng</creatorcontrib><creatorcontrib>Wang, Likui</creatorcontrib><title>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</title><title>Optimal control applications & methods</title><description>In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples.</description><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVzj8KwjAUgPEgCtY_4BHe6NL6kraos1VcCqLuIdZUIrWRvDj0Bp7Cw3kSLXgBp2_5hh9jE44RRxQzW6goFil2WMBxuQx5ypMuC5AncShwMe-zAdEVEec8FgHL9_b0IA9bEKDq87fv5ws2pvLaQabJXGoorYOdrRpv76aAQ0Ne3whODWSmUt7UF8iVd6bQNGK9UlWkx78O2XSzPq62YeEskdOlvDtzU66RHGXLlV-ubLnxH-sHAm9FmQ</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Cui, Yuefeng</creator><creator>Wang, Likui</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6718-1403</orcidid></search><sort><creationdate>20250102</creationdate><title>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</title><author>Cui, Yuefeng ; Wang, Likui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_oca_32503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yuefeng</creatorcontrib><creatorcontrib>Wang, Likui</creatorcontrib><collection>CrossRef</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yuefeng</au><au>Wang, Likui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices</atitle><jtitle>Optimal control applications & methods</jtitle><date>2025-01-02</date><risdate>2025</risdate><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>In this article, the problem of robust and filter design for linear systems with polytopic parameters is studied. First, the dimensions of filter design matrices are dilated. For filter, the matrix is dilated from 3 to 4, and for filter, the corresponding matrix is dilated from 4 to 5, such that more slack variables can be introduced. Then, the polynomial parameter‐dependent method is applied to design the Lyapunov function and filter gains. In addition, an iteration algorithm is used to further reduce the conservativeness. Finally, the effectiveness and the superiority of the proposed conditions are shown by four examples.</abstract><doi>10.1002/oca.3250</doi><orcidid>https://orcid.org/0000-0002-6718-1403</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2025-01 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_crossref_primary_10_1002_oca_3250 |
source | Wiley Online Library - AutoHoldings Journals |
title | Robust H 2 and H ∞ Filter Design for Polytopic Systems by Dilating Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%202%20and%20H%20%E2%88%9E%20Filter%20Design%20for%20Polytopic%20Systems%20by%20Dilating%20Matrices&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Cui,%20Yuefeng&rft.date=2025-01-02&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.3250&rft_dat=%3Ccrossref%3E10_1002_oca_3250%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |