A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation

A H 1 ‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2019-03, Vol.35 (2), p.445-477
Hauptverfasser: Doss, L. Jones Tarcius, Nandini, A. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 2
container_start_page 445
container_title Numerical methods for partial differential equations
container_volume 35
creator Doss, L. Jones Tarcius
Nandini, A. P.
description A H 1 ‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., ( n  + 1) × ( n  + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.
doi_str_mv 10.1002/num.22306
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_num_22306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_num_22306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</originalsourceid><addsrcrecordid>eNotkE1OwzAUhC0EEqWw4Abesgi859RJvawqaBGVWAASu2DiZ9W0icF2EN31CEjcsCch_KxGM4vRzMfYKcI5AoiLtmvOhcih2GMDBDXOxEgU-2wA5UhlKNXjITuK8QUAUaIasKcJt74LabnbfvpgKPA5R96bmV5TWLmWN-6DDLeudYk4ramhNvGG0tL3qQ_8pgu68cnvtl937l3HpWvjasPprdPJ-faYHVi9jnTyr0P2cHV5P51ni9vZ9XSyyOp-VcpMaUSt5djUUgJIY1Ara8oRQi7p2fQniv6N1aitGJeS0BTK5EYKEKrO6zIfsrO_3jr4GAPZ6jW4RodNhVD9oKl6NNUvmvwb32Ba7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</title><source>Wiley Online Library All Journals</source><creator>Doss, L. Jones Tarcius ; Nandini, A. P.</creator><creatorcontrib>Doss, L. Jones Tarcius ; Nandini, A. P.</creatorcontrib><description>A H 1 ‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., ( n  + 1) × ( n  + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22306</identifier><language>eng</language><ispartof>Numerical methods for partial differential equations, 2019-03, Vol.35 (2), p.445-477</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</citedby><cites>FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</cites><orcidid>0000-0001-7558-6198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Doss, L. Jones Tarcius</creatorcontrib><creatorcontrib>Nandini, A. P.</creatorcontrib><title>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</title><title>Numerical methods for partial differential equations</title><description>A H 1 ‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., ( n  + 1) × ( n  + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.</description><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAUhC0EEqWw4Abesgi859RJvawqaBGVWAASu2DiZ9W0icF2EN31CEjcsCch_KxGM4vRzMfYKcI5AoiLtmvOhcih2GMDBDXOxEgU-2wA5UhlKNXjITuK8QUAUaIasKcJt74LabnbfvpgKPA5R96bmV5TWLmWN-6DDLeudYk4ramhNvGG0tL3qQ_8pgu68cnvtl937l3HpWvjasPprdPJ-faYHVi9jnTyr0P2cHV5P51ni9vZ9XSyyOp-VcpMaUSt5djUUgJIY1Ara8oRQi7p2fQniv6N1aitGJeS0BTK5EYKEKrO6zIfsrO_3jr4GAPZ6jW4RodNhVD9oKl6NNUvmvwb32Ba7A</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Doss, L. Jones Tarcius</creator><creator>Nandini, A. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7558-6198</orcidid></search><sort><creationdate>201903</creationdate><title>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</title><author>Doss, L. Jones Tarcius ; Nandini, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doss, L. Jones Tarcius</creatorcontrib><creatorcontrib>Nandini, A. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doss, L. Jones Tarcius</au><au>Nandini, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2019-03</date><risdate>2019</risdate><volume>35</volume><issue>2</issue><spage>445</spage><epage>477</epage><pages>445-477</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>A H 1 ‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., ( n  + 1) × ( n  + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.</abstract><doi>10.1002/num.22306</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-7558-6198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2019-03, Vol.35 (2), p.445-477
issn 0749-159X
1098-2426
language eng
recordid cdi_crossref_primary_10_1002_num_22306
source Wiley Online Library All Journals
title A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fourth%E2%80%90order%20H%201%20%E2%80%90Galerkin%20mixed%20finite%20element%20method%20for%20Kuramoto%E2%80%93Sivashinsky%20equation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Doss,%20L.%20Jones%20Tarcius&rft.date=2019-03&rft.volume=35&rft.issue=2&rft.spage=445&rft.epage=477&rft.pages=445-477&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22306&rft_dat=%3Ccrossref%3E10_1002_num_22306%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true