A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation
A H 1 ‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2019-03, Vol.35 (2), p.445-477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 2 |
container_start_page | 445 |
container_title | Numerical methods for partial differential equations |
container_volume | 35 |
creator | Doss, L. Jones Tarcius Nandini, A. P. |
description | A
H
1
‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (
n
+ 1) × (
n
+ 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where
n
is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method. |
doi_str_mv | 10.1002/num.22306 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_num_22306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_num_22306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</originalsourceid><addsrcrecordid>eNotkE1OwzAUhC0EEqWw4Abesgi859RJvawqaBGVWAASu2DiZ9W0icF2EN31CEjcsCch_KxGM4vRzMfYKcI5AoiLtmvOhcih2GMDBDXOxEgU-2wA5UhlKNXjITuK8QUAUaIasKcJt74LabnbfvpgKPA5R96bmV5TWLmWN-6DDLeudYk4ramhNvGG0tL3qQ_8pgu68cnvtl937l3HpWvjasPprdPJ-faYHVi9jnTyr0P2cHV5P51ni9vZ9XSyyOp-VcpMaUSt5djUUgJIY1Ara8oRQi7p2fQniv6N1aitGJeS0BTK5EYKEKrO6zIfsrO_3jr4GAPZ6jW4RodNhVD9oKl6NNUvmvwb32Ba7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</title><source>Wiley Online Library All Journals</source><creator>Doss, L. Jones Tarcius ; Nandini, A. P.</creator><creatorcontrib>Doss, L. Jones Tarcius ; Nandini, A. P.</creatorcontrib><description>A
H
1
‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (
n
+ 1) × (
n
+ 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where
n
is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22306</identifier><language>eng</language><ispartof>Numerical methods for partial differential equations, 2019-03, Vol.35 (2), p.445-477</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</citedby><cites>FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</cites><orcidid>0000-0001-7558-6198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Doss, L. Jones Tarcius</creatorcontrib><creatorcontrib>Nandini, A. P.</creatorcontrib><title>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</title><title>Numerical methods for partial differential equations</title><description>A
H
1
‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (
n
+ 1) × (
n
+ 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where
n
is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.</description><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAUhC0EEqWw4Abesgi859RJvawqaBGVWAASu2DiZ9W0icF2EN31CEjcsCch_KxGM4vRzMfYKcI5AoiLtmvOhcih2GMDBDXOxEgU-2wA5UhlKNXjITuK8QUAUaIasKcJt74LabnbfvpgKPA5R96bmV5TWLmWN-6DDLeudYk4ramhNvGG0tL3qQ_8pgu68cnvtl937l3HpWvjasPprdPJ-faYHVi9jnTyr0P2cHV5P51ni9vZ9XSyyOp-VcpMaUSt5djUUgJIY1Ara8oRQi7p2fQniv6N1aitGJeS0BTK5EYKEKrO6zIfsrO_3jr4GAPZ6jW4RodNhVD9oKl6NNUvmvwb32Ba7A</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Doss, L. Jones Tarcius</creator><creator>Nandini, A. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7558-6198</orcidid></search><sort><creationdate>201903</creationdate><title>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</title><author>Doss, L. Jones Tarcius ; Nandini, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-d7d2ca58dc55005dd1a9fd741035ebd4266098fa1af2875e1d69d3d52029c3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doss, L. Jones Tarcius</creatorcontrib><creatorcontrib>Nandini, A. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doss, L. Jones Tarcius</au><au>Nandini, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2019-03</date><risdate>2019</risdate><volume>35</volume><issue>2</issue><spage>445</spage><epage>477</epage><pages>445-477</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>A
H
1
‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (
n
+ 1) × (
n
+ 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where
n
is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.</abstract><doi>10.1002/num.22306</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-7558-6198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2019-03, Vol.35 (2), p.445-477 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_crossref_primary_10_1002_num_22306 |
source | Wiley Online Library All Journals |
title | A fourth‐order H 1 ‐Galerkin mixed finite element method for Kuramoto–Sivashinsky equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fourth%E2%80%90order%20H%201%20%E2%80%90Galerkin%20mixed%20finite%20element%20method%20for%20Kuramoto%E2%80%93Sivashinsky%20equation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Doss,%20L.%20Jones%20Tarcius&rft.date=2019-03&rft.volume=35&rft.issue=2&rft.spage=445&rft.epage=477&rft.pages=445-477&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22306&rft_dat=%3Ccrossref%3E10_1002_num_22306%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |