Composite mixed finite elements on plane quadrilaterals

Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 1993-09, Vol.9 (5), p.551-559
Hauptverfasser: Bendali, A., Lahmar, N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue 5
container_start_page 551
container_title Numerical methods for partial differential equations
container_volume 9
creator Bendali, A.
Lahmar, N.
description Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley & Sons, Inc.
doi_str_mv 10.1002/num.1690090505
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_num_1690090505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NUM1690090505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</originalsourceid><addsrcrecordid>eNqFj01Lw0AURQdRsFa3rvMHUt-bzEycpURthaYiVHQ3TJMXGM1HnUmx_femVBRXbt7lwT0XDmOXCBME4Fftppmg0gAaJMgjNkLQ1zEXXB2zEaRCxyj16yk7C-ENAFGiHrE065p1F1xPUeO2VEaVa_cP1dRQ24eoa6N1bVuKPja29K62PXlbh3N2Ug1BF985Zsv7u2U2i-eP04fsZh4XXICMtVS8UoUebsELUsKqCioqJSRSIiaCVIlKrCRf2bRckU245QVXqSLkXCVjNjnMFr4LwVNl1t411u8Mgtlbm8Ha_FoPgD4An66m3T9ts3jO_7DxgXWhp-0Pa_27UWmSSvOymBqZP81uRZYbkXwBgC1qvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Composite mixed finite elements on plane quadrilaterals</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bendali, A. ; Lahmar, N.</creator><creatorcontrib>Bendali, A. ; Lahmar, N.</creatorcontrib><description>Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.1690090505</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><ispartof>Numerical methods for partial differential equations, 1993-09, Vol.9 (5), p.551-559</ispartof><rights>Copyright © 1993 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</citedby><cites>FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.1690090505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.1690090505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bendali, A.</creatorcontrib><creatorcontrib>Lahmar, N.</creatorcontrib><title>Composite mixed finite elements on plane quadrilaterals</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley &amp; Sons, Inc.</description><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AURQdRsFa3rvMHUt-bzEycpURthaYiVHQ3TJMXGM1HnUmx_femVBRXbt7lwT0XDmOXCBME4Fftppmg0gAaJMgjNkLQ1zEXXB2zEaRCxyj16yk7C-ENAFGiHrE065p1F1xPUeO2VEaVa_cP1dRQ24eoa6N1bVuKPja29K62PXlbh3N2Ug1BF985Zsv7u2U2i-eP04fsZh4XXICMtVS8UoUebsELUsKqCioqJSRSIiaCVIlKrCRf2bRckU245QVXqSLkXCVjNjnMFr4LwVNl1t411u8Mgtlbm8Ha_FoPgD4An66m3T9ts3jO_7DxgXWhp-0Pa_27UWmSSvOymBqZP81uRZYbkXwBgC1qvA</recordid><startdate>199309</startdate><enddate>199309</enddate><creator>Bendali, A.</creator><creator>Lahmar, N.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199309</creationdate><title>Composite mixed finite elements on plane quadrilaterals</title><author>Bendali, A. ; Lahmar, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendali, A.</creatorcontrib><creatorcontrib>Lahmar, N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendali, A.</au><au>Lahmar, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite mixed finite elements on plane quadrilaterals</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>1993-09</date><risdate>1993</risdate><volume>9</volume><issue>5</issue><spage>551</spage><epage>559</epage><pages>551-559</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.1690090505</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 1993-09, Vol.9 (5), p.551-559
issn 0749-159X
1098-2426
language eng
recordid cdi_crossref_primary_10_1002_num_1690090505
source Wiley Online Library Journals Frontfile Complete
title Composite mixed finite elements on plane quadrilaterals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20mixed%20finite%20elements%20on%20plane%20quadrilaterals&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Bendali,%20A.&rft.date=1993-09&rft.volume=9&rft.issue=5&rft.spage=551&rft.epage=559&rft.pages=551-559&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.1690090505&rft_dat=%3Cwiley_cross%3ENUM1690090505%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true