Composite mixed finite elements on plane quadrilaterals
Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a fin...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 1993-09, Vol.9 (5), p.551-559 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 559 |
---|---|
container_issue | 5 |
container_start_page | 551 |
container_title | Numerical methods for partial differential equations |
container_volume | 9 |
creator | Bendali, A. Lahmar, N. |
description | Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/num.1690090505 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_num_1690090505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NUM1690090505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</originalsourceid><addsrcrecordid>eNqFj01Lw0AURQdRsFa3rvMHUt-bzEycpURthaYiVHQ3TJMXGM1HnUmx_femVBRXbt7lwT0XDmOXCBME4Fftppmg0gAaJMgjNkLQ1zEXXB2zEaRCxyj16yk7C-ENAFGiHrE065p1F1xPUeO2VEaVa_cP1dRQ24eoa6N1bVuKPja29K62PXlbh3N2Ug1BF985Zsv7u2U2i-eP04fsZh4XXICMtVS8UoUebsELUsKqCioqJSRSIiaCVIlKrCRf2bRckU245QVXqSLkXCVjNjnMFr4LwVNl1t411u8Mgtlbm8Ha_FoPgD4An66m3T9ts3jO_7DxgXWhp-0Pa_27UWmSSvOymBqZP81uRZYbkXwBgC1qvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Composite mixed finite elements on plane quadrilaterals</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bendali, A. ; Lahmar, N.</creator><creatorcontrib>Bendali, A. ; Lahmar, N.</creatorcontrib><description>Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley & Sons, Inc.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.1690090505</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><ispartof>Numerical methods for partial differential equations, 1993-09, Vol.9 (5), p.551-559</ispartof><rights>Copyright © 1993 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</citedby><cites>FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.1690090505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.1690090505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bendali, A.</creatorcontrib><creatorcontrib>Lahmar, N.</creatorcontrib><title>Composite mixed finite elements on plane quadrilaterals</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley & Sons, Inc.</description><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AURQdRsFa3rvMHUt-bzEycpURthaYiVHQ3TJMXGM1HnUmx_femVBRXbt7lwT0XDmOXCBME4Fftppmg0gAaJMgjNkLQ1zEXXB2zEaRCxyj16yk7C-ENAFGiHrE065p1F1xPUeO2VEaVa_cP1dRQ24eoa6N1bVuKPja29K62PXlbh3N2Ug1BF985Zsv7u2U2i-eP04fsZh4XXICMtVS8UoUebsELUsKqCioqJSRSIiaCVIlKrCRf2bRckU245QVXqSLkXCVjNjnMFr4LwVNl1t411u8Mgtlbm8Ha_FoPgD4An66m3T9ts3jO_7DxgXWhp-0Pa_27UWmSSvOymBqZP81uRZYbkXwBgC1qvA</recordid><startdate>199309</startdate><enddate>199309</enddate><creator>Bendali, A.</creator><creator>Lahmar, N.</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199309</creationdate><title>Composite mixed finite elements on plane quadrilaterals</title><author>Bendali, A. ; Lahmar, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2405-9562f6c962fc2ce64a6f0fed503551134e6d164b52ba7dbea32a2c2676e12263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendali, A.</creatorcontrib><creatorcontrib>Lahmar, N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendali, A.</au><au>Lahmar, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite mixed finite elements on plane quadrilaterals</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>1993-09</date><risdate>1993</risdate><volume>9</volume><issue>5</issue><spage>551</spage><epage>559</epage><pages>551-559</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart‐Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ⩽ l, where l is the greater integer for which the same property is satisfied by the relevant Raviart‐Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer‐Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2, 29–45 (1974)]. © 1993 John Wiley & Sons, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.1690090505</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 1993-09, Vol.9 (5), p.551-559 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_crossref_primary_10_1002_num_1690090505 |
source | Wiley Online Library Journals Frontfile Complete |
title | Composite mixed finite elements on plane quadrilaterals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20mixed%20finite%20elements%20on%20plane%20quadrilaterals&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Bendali,%20A.&rft.date=1993-09&rft.volume=9&rft.issue=5&rft.spage=551&rft.epage=559&rft.pages=551-559&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.1690090505&rft_dat=%3Cwiley_cross%3ENUM1690090505%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |