Domain-decomposition approach to local grid refinement in finite element collocation
Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fro...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 1992-07, Vol.8 (4), p.341-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 4 |
container_start_page | 341 |
container_title | Numerical methods for partial differential equations |
container_volume | 8 |
creator | Curran, Mark C. Allen, Myron B. |
description | Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem. |
doi_str_mv | 10.1002/num.1690080404 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_num_1690080404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_KD03NHTD_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMvsFUs5xnMQjaqBFlLK0gs1ynAsYkjiKg2jfnlRBICamO53-7_TpJ-SSwYwBhFfNRz1jsQRIIYLoiEwYyDQIozA-JhNIIhkwIZ9PyZn3bwCMCSYnZJO5WtsmKNC4unXe9tY1VLdt57R5pb2jlTO6oi-dLWiHpW2wxqantqHDbnukWI0X46pD9MCfk5NSVx4vvueUbG9vNvNlsHpc3M2vV4EJB8MAy0IOspqHIBKUOQpelgZSwRDysuAQM2TM8NxwDoLLXGASh6GJoIjTtBB8SmbjX9M57wc71Xa21t1eMVCHTtTQifrtZADkCHzaCvf_pNV6-_CHDUbW-h53P6zu3lWc8ESop_VC3WfA18tNpjL-BW0tdeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Domain-decomposition approach to local grid refinement in finite element collocation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Curran, Mark C. ; Allen, Myron B.</creator><creatorcontrib>Curran, Mark C. ; Allen, Myron B.</creatorcontrib><description>Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.1690080404</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><ispartof>Numerical methods for partial differential equations, 1992-07, Vol.8 (4), p.341-355</ispartof><rights>Copyright © 1992 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</citedby><cites>FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.1690080404$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.1690080404$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Curran, Mark C.</creatorcontrib><creatorcontrib>Allen, Myron B.</creatorcontrib><title>Domain-decomposition approach to local grid refinement in finite element collocation</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.</description><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMvsFUs5xnMQjaqBFlLK0gs1ynAsYkjiKg2jfnlRBICamO53-7_TpJ-SSwYwBhFfNRz1jsQRIIYLoiEwYyDQIozA-JhNIIhkwIZ9PyZn3bwCMCSYnZJO5WtsmKNC4unXe9tY1VLdt57R5pb2jlTO6oi-dLWiHpW2wxqantqHDbnukWI0X46pD9MCfk5NSVx4vvueUbG9vNvNlsHpc3M2vV4EJB8MAy0IOspqHIBKUOQpelgZSwRDysuAQM2TM8NxwDoLLXGASh6GJoIjTtBB8SmbjX9M57wc71Xa21t1eMVCHTtTQifrtZADkCHzaCvf_pNV6-_CHDUbW-h53P6zu3lWc8ESop_VC3WfA18tNpjL-BW0tdeU</recordid><startdate>199207</startdate><enddate>199207</enddate><creator>Curran, Mark C.</creator><creator>Allen, Myron B.</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199207</creationdate><title>Domain-decomposition approach to local grid refinement in finite element collocation</title><author>Curran, Mark C. ; Allen, Myron B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curran, Mark C.</creatorcontrib><creatorcontrib>Allen, Myron B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curran, Mark C.</au><au>Allen, Myron B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain-decomposition approach to local grid refinement in finite element collocation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>1992-07</date><risdate>1992</risdate><volume>8</volume><issue>4</issue><spage>341</spage><epage>355</epage><pages>341-355</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.1690080404</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 1992-07, Vol.8 (4), p.341-355 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_crossref_primary_10_1002_num_1690080404 |
source | Wiley Online Library Journals Frontfile Complete |
title | Domain-decomposition approach to local grid refinement in finite element collocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain-decomposition%20approach%20to%20local%20grid%20refinement%20in%20finite%20element%20collocation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Curran,%20Mark%20C.&rft.date=1992-07&rft.volume=8&rft.issue=4&rft.spage=341&rft.epage=355&rft.pages=341-355&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.1690080404&rft_dat=%3Cistex_cross%3Eark_67375_WNG_KD03NHTD_D%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |