Domain-decomposition approach to local grid refinement in finite element collocation

Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 1992-07, Vol.8 (4), p.341-355
Hauptverfasser: Curran, Mark C., Allen, Myron B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 4
container_start_page 341
container_title Numerical methods for partial differential equations
container_volume 8
creator Curran, Mark C.
Allen, Myron B.
description Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.
doi_str_mv 10.1002/num.1690080404
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_num_1690080404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_KD03NHTD_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMvsFUs5xnMQjaqBFlLK0gs1ynAsYkjiKg2jfnlRBICamO53-7_TpJ-SSwYwBhFfNRz1jsQRIIYLoiEwYyDQIozA-JhNIIhkwIZ9PyZn3bwCMCSYnZJO5WtsmKNC4unXe9tY1VLdt57R5pb2jlTO6oi-dLWiHpW2wxqantqHDbnukWI0X46pD9MCfk5NSVx4vvueUbG9vNvNlsHpc3M2vV4EJB8MAy0IOspqHIBKUOQpelgZSwRDysuAQM2TM8NxwDoLLXGASh6GJoIjTtBB8SmbjX9M57wc71Xa21t1eMVCHTtTQifrtZADkCHzaCvf_pNV6-_CHDUbW-h53P6zu3lWc8ESop_VC3WfA18tNpjL-BW0tdeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Domain-decomposition approach to local grid refinement in finite element collocation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Curran, Mark C. ; Allen, Myron B.</creator><creatorcontrib>Curran, Mark C. ; Allen, Myron B.</creatorcontrib><description>Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.1690080404</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><ispartof>Numerical methods for partial differential equations, 1992-07, Vol.8 (4), p.341-355</ispartof><rights>Copyright © 1992 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</citedby><cites>FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.1690080404$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.1690080404$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Curran, Mark C.</creatorcontrib><creatorcontrib>Allen, Myron B.</creatorcontrib><title>Domain-decomposition approach to local grid refinement in finite element collocation</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.</description><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMvsFUs5xnMQjaqBFlLK0gs1ynAsYkjiKg2jfnlRBICamO53-7_TpJ-SSwYwBhFfNRz1jsQRIIYLoiEwYyDQIozA-JhNIIhkwIZ9PyZn3bwCMCSYnZJO5WtsmKNC4unXe9tY1VLdt57R5pb2jlTO6oi-dLWiHpW2wxqantqHDbnukWI0X46pD9MCfk5NSVx4vvueUbG9vNvNlsHpc3M2vV4EJB8MAy0IOspqHIBKUOQpelgZSwRDysuAQM2TM8NxwDoLLXGASh6GJoIjTtBB8SmbjX9M57wc71Xa21t1eMVCHTtTQifrtZADkCHzaCvf_pNV6-_CHDUbW-h53P6zu3lWc8ESop_VC3WfA18tNpjL-BW0tdeU</recordid><startdate>199207</startdate><enddate>199207</enddate><creator>Curran, Mark C.</creator><creator>Allen, Myron B.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199207</creationdate><title>Domain-decomposition approach to local grid refinement in finite element collocation</title><author>Curran, Mark C. ; Allen, Myron B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2404-efd9080a32057e9be53ffc0851e0bfd3061e11c3bc330539b5e7622c40d688d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curran, Mark C.</creatorcontrib><creatorcontrib>Allen, Myron B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curran, Mark C.</au><au>Allen, Myron B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain-decomposition approach to local grid refinement in finite element collocation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>1992-07</date><risdate>1992</risdate><volume>8</volume><issue>4</issue><spage>341</spage><epage>355</epage><pages>341-355</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>Advection‐dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady‐state problems with boundary and interior layers and a time‐dependent advection‐diffusion problem.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.1690080404</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 1992-07, Vol.8 (4), p.341-355
issn 0749-159X
1098-2426
language eng
recordid cdi_crossref_primary_10_1002_num_1690080404
source Wiley Online Library Journals Frontfile Complete
title Domain-decomposition approach to local grid refinement in finite element collocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain-decomposition%20approach%20to%20local%20grid%20refinement%20in%20finite%20element%20collocation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Curran,%20Mark%20C.&rft.date=1992-07&rft.volume=8&rft.issue=4&rft.spage=341&rft.epage=355&rft.pages=341-355&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.1690080404&rft_dat=%3Cistex_cross%3Eark_67375_WNG_KD03NHTD_D%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true