Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone
ABSTRACT Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within...
Gespeichert in:
Veröffentlicht in: | Near surface geophysics (Online) 2021-04, Vol.19 (2), p.261-277 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 2 |
container_start_page | 261 |
container_title | Near surface geophysics (Online) |
container_volume | 19 |
creator | Bricheva, Svetlana S. Dubrovin, Ivan O. Lunina, Oksana V. Denisenko, Ivan A. Matasov, Victor M. Turova, Irina V. Entin, Andrey L. Panin, Andrey V. Deev, Evgeny V. |
description | ABSTRACT
Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification. |
doi_str_mv | 10.1002/nsg.12153 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nsg_12153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NSG12153</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7_RMnHlEFBakqAzBbbnIdIiVxZSdCYeIReEaehJSyMt2jo-_c4SPkmsGSAfBVF6sl4ywVZ2TG8kwkoECeTzlVOpFSppdkEWO9BykVA5lnM2J2Q4uhLmxDY90Oje1r31HvaBX80JXfn18H7LAPU99VNNjSBlra3lLnA439UI7Hvn9DWqFvJ3A8jp0dmp5--A6vyIWzTcTF352T1_u7l_VDsn3aPK5vt4nlmotECqdEUThQ2gKCVBpzjkzpfI85KgmaZVma7plQQjDgWaY55IKh44pxDmJObk5_i-BjDOjMIdStDaNhYI5yzCTH_MqZ2NWJfa8bHP8Hze55c1r8AL53Zsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</title><source>Access via Wiley Online Library</source><creator>Bricheva, Svetlana S. ; Dubrovin, Ivan O. ; Lunina, Oksana V. ; Denisenko, Ivan A. ; Matasov, Victor M. ; Turova, Irina V. ; Entin, Andrey L. ; Panin, Andrey V. ; Deev, Evgeny V.</creator><creatorcontrib>Bricheva, Svetlana S. ; Dubrovin, Ivan O. ; Lunina, Oksana V. ; Denisenko, Ivan A. ; Matasov, Victor M. ; Turova, Irina V. ; Entin, Andrey L. ; Panin, Andrey V. ; Deev, Evgeny V.</creatorcontrib><description>ABSTRACT
Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification.</description><identifier>ISSN: 1569-4445</identifier><identifier>EISSN: 1873-0604</identifier><identifier>DOI: 10.1002/nsg.12153</identifier><language>eng</language><subject>Faults ; Finite‐difference ; Geohazard ; Ground‐penetrating radar ; Numerical modelling</subject><ispartof>Near surface geophysics (Online), 2021-04, Vol.19 (2), p.261-277</ispartof><rights>2021 European Association of Geoscientists & Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</citedby><cites>FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</cites><orcidid>0000-0003-1897-3719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnsg.12153$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnsg.12153$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bricheva, Svetlana S.</creatorcontrib><creatorcontrib>Dubrovin, Ivan O.</creatorcontrib><creatorcontrib>Lunina, Oksana V.</creatorcontrib><creatorcontrib>Denisenko, Ivan A.</creatorcontrib><creatorcontrib>Matasov, Victor M.</creatorcontrib><creatorcontrib>Turova, Irina V.</creatorcontrib><creatorcontrib>Entin, Andrey L.</creatorcontrib><creatorcontrib>Panin, Andrey V.</creatorcontrib><creatorcontrib>Deev, Evgeny V.</creatorcontrib><title>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</title><title>Near surface geophysics (Online)</title><description>ABSTRACT
Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification.</description><subject>Faults</subject><subject>Finite‐difference</subject><subject>Geohazard</subject><subject>Ground‐penetrating radar</subject><subject>Numerical modelling</subject><issn>1569-4445</issn><issn>1873-0604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7_RMnHlEFBakqAzBbbnIdIiVxZSdCYeIReEaehJSyMt2jo-_c4SPkmsGSAfBVF6sl4ywVZ2TG8kwkoECeTzlVOpFSppdkEWO9BykVA5lnM2J2Q4uhLmxDY90Oje1r31HvaBX80JXfn18H7LAPU99VNNjSBlra3lLnA439UI7Hvn9DWqFvJ3A8jp0dmp5--A6vyIWzTcTF352T1_u7l_VDsn3aPK5vt4nlmotECqdEUThQ2gKCVBpzjkzpfI85KgmaZVma7plQQjDgWaY55IKh44pxDmJObk5_i-BjDOjMIdStDaNhYI5yzCTH_MqZ2NWJfa8bHP8Hze55c1r8AL53Zsc</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Bricheva, Svetlana S.</creator><creator>Dubrovin, Ivan O.</creator><creator>Lunina, Oksana V.</creator><creator>Denisenko, Ivan A.</creator><creator>Matasov, Victor M.</creator><creator>Turova, Irina V.</creator><creator>Entin, Andrey L.</creator><creator>Panin, Andrey V.</creator><creator>Deev, Evgeny V.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1897-3719</orcidid></search><sort><creationdate>202104</creationdate><title>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</title><author>Bricheva, Svetlana S. ; Dubrovin, Ivan O. ; Lunina, Oksana V. ; Denisenko, Ivan A. ; Matasov, Victor M. ; Turova, Irina V. ; Entin, Andrey L. ; Panin, Andrey V. ; Deev, Evgeny V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Faults</topic><topic>Finite‐difference</topic><topic>Geohazard</topic><topic>Ground‐penetrating radar</topic><topic>Numerical modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bricheva, Svetlana S.</creatorcontrib><creatorcontrib>Dubrovin, Ivan O.</creatorcontrib><creatorcontrib>Lunina, Oksana V.</creatorcontrib><creatorcontrib>Denisenko, Ivan A.</creatorcontrib><creatorcontrib>Matasov, Victor M.</creatorcontrib><creatorcontrib>Turova, Irina V.</creatorcontrib><creatorcontrib>Entin, Andrey L.</creatorcontrib><creatorcontrib>Panin, Andrey V.</creatorcontrib><creatorcontrib>Deev, Evgeny V.</creatorcontrib><collection>CrossRef</collection><jtitle>Near surface geophysics (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bricheva, Svetlana S.</au><au>Dubrovin, Ivan O.</au><au>Lunina, Oksana V.</au><au>Denisenko, Ivan A.</au><au>Matasov, Victor M.</au><au>Turova, Irina V.</au><au>Entin, Andrey L.</au><au>Panin, Andrey V.</au><au>Deev, Evgeny V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</atitle><jtitle>Near surface geophysics (Online)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>19</volume><issue>2</issue><spage>261</spage><epage>277</epage><pages>261-277</pages><issn>1569-4445</issn><eissn>1873-0604</eissn><abstract>ABSTRACT
Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification.</abstract><doi>10.1002/nsg.12153</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1897-3719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-4445 |
ispartof | Near surface geophysics (Online), 2021-04, Vol.19 (2), p.261-277 |
issn | 1569-4445 1873-0604 |
language | eng |
recordid | cdi_crossref_primary_10_1002_nsg_12153 |
source | Access via Wiley Online Library |
subjects | Faults Finite‐difference Geohazard Ground‐penetrating radar Numerical modelling |
title | Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20ground%E2%80%90penetrating%20radar%20data%20for%20studying%20the%20geometry%20of%20fault%20zone&rft.jtitle=Near%20surface%20geophysics%20(Online)&rft.au=Bricheva,%20Svetlana%20S.&rft.date=2021-04&rft.volume=19&rft.issue=2&rft.spage=261&rft.epage=277&rft.pages=261-277&rft.issn=1569-4445&rft.eissn=1873-0604&rft_id=info:doi/10.1002/nsg.12153&rft_dat=%3Cwiley_cross%3ENSG12153%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |