Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone

ABSTRACT Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Near surface geophysics (Online) 2021-04, Vol.19 (2), p.261-277
Hauptverfasser: Bricheva, Svetlana S., Dubrovin, Ivan O., Lunina, Oksana V., Denisenko, Ivan A., Matasov, Victor M., Turova, Irina V., Entin, Andrey L., Panin, Andrey V., Deev, Evgeny V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 2
container_start_page 261
container_title Near surface geophysics (Online)
container_volume 19
creator Bricheva, Svetlana S.
Dubrovin, Ivan O.
Lunina, Oksana V.
Denisenko, Ivan A.
Matasov, Victor M.
Turova, Irina V.
Entin, Andrey L.
Panin, Andrey V.
Deev, Evgeny V.
description ABSTRACT Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification.
doi_str_mv 10.1002/nsg.12153
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nsg_12153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NSG12153</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7_RMnHlEFBakqAzBbbnIdIiVxZSdCYeIReEaehJSyMt2jo-_c4SPkmsGSAfBVF6sl4ywVZ2TG8kwkoECeTzlVOpFSppdkEWO9BykVA5lnM2J2Q4uhLmxDY90Oje1r31HvaBX80JXfn18H7LAPU99VNNjSBlra3lLnA439UI7Hvn9DWqFvJ3A8jp0dmp5--A6vyIWzTcTF352T1_u7l_VDsn3aPK5vt4nlmotECqdEUThQ2gKCVBpzjkzpfI85KgmaZVma7plQQjDgWaY55IKh44pxDmJObk5_i-BjDOjMIdStDaNhYI5yzCTH_MqZ2NWJfa8bHP8Hze55c1r8AL53Zsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</title><source>Access via Wiley Online Library</source><creator>Bricheva, Svetlana S. ; Dubrovin, Ivan O. ; Lunina, Oksana V. ; Denisenko, Ivan A. ; Matasov, Victor M. ; Turova, Irina V. ; Entin, Andrey L. ; Panin, Andrey V. ; Deev, Evgeny V.</creator><creatorcontrib>Bricheva, Svetlana S. ; Dubrovin, Ivan O. ; Lunina, Oksana V. ; Denisenko, Ivan A. ; Matasov, Victor M. ; Turova, Irina V. ; Entin, Andrey L. ; Panin, Andrey V. ; Deev, Evgeny V.</creatorcontrib><description>ABSTRACT Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification.</description><identifier>ISSN: 1569-4445</identifier><identifier>EISSN: 1873-0604</identifier><identifier>DOI: 10.1002/nsg.12153</identifier><language>eng</language><subject>Faults ; Finite‐difference ; Geohazard ; Ground‐penetrating radar ; Numerical modelling</subject><ispartof>Near surface geophysics (Online), 2021-04, Vol.19 (2), p.261-277</ispartof><rights>2021 European Association of Geoscientists &amp; Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</citedby><cites>FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</cites><orcidid>0000-0003-1897-3719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnsg.12153$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnsg.12153$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bricheva, Svetlana S.</creatorcontrib><creatorcontrib>Dubrovin, Ivan O.</creatorcontrib><creatorcontrib>Lunina, Oksana V.</creatorcontrib><creatorcontrib>Denisenko, Ivan A.</creatorcontrib><creatorcontrib>Matasov, Victor M.</creatorcontrib><creatorcontrib>Turova, Irina V.</creatorcontrib><creatorcontrib>Entin, Andrey L.</creatorcontrib><creatorcontrib>Panin, Andrey V.</creatorcontrib><creatorcontrib>Deev, Evgeny V.</creatorcontrib><title>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</title><title>Near surface geophysics (Online)</title><description>ABSTRACT Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification.</description><subject>Faults</subject><subject>Finite‐difference</subject><subject>Geohazard</subject><subject>Ground‐penetrating radar</subject><subject>Numerical modelling</subject><issn>1569-4445</issn><issn>1873-0604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7_RMnHlEFBakqAzBbbnIdIiVxZSdCYeIReEaehJSyMt2jo-_c4SPkmsGSAfBVF6sl4ywVZ2TG8kwkoECeTzlVOpFSppdkEWO9BykVA5lnM2J2Q4uhLmxDY90Oje1r31HvaBX80JXfn18H7LAPU99VNNjSBlra3lLnA439UI7Hvn9DWqFvJ3A8jp0dmp5--A6vyIWzTcTF352T1_u7l_VDsn3aPK5vt4nlmotECqdEUThQ2gKCVBpzjkzpfI85KgmaZVma7plQQjDgWaY55IKh44pxDmJObk5_i-BjDOjMIdStDaNhYI5yzCTH_MqZ2NWJfa8bHP8Hze55c1r8AL53Zsc</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Bricheva, Svetlana S.</creator><creator>Dubrovin, Ivan O.</creator><creator>Lunina, Oksana V.</creator><creator>Denisenko, Ivan A.</creator><creator>Matasov, Victor M.</creator><creator>Turova, Irina V.</creator><creator>Entin, Andrey L.</creator><creator>Panin, Andrey V.</creator><creator>Deev, Evgeny V.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1897-3719</orcidid></search><sort><creationdate>202104</creationdate><title>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</title><author>Bricheva, Svetlana S. ; Dubrovin, Ivan O. ; Lunina, Oksana V. ; Denisenko, Ivan A. ; Matasov, Victor M. ; Turova, Irina V. ; Entin, Andrey L. ; Panin, Andrey V. ; Deev, Evgeny V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2923-43f63ccf069a0e0469e82e1698be8e640917755b1363310277920831ef2612203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Faults</topic><topic>Finite‐difference</topic><topic>Geohazard</topic><topic>Ground‐penetrating radar</topic><topic>Numerical modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bricheva, Svetlana S.</creatorcontrib><creatorcontrib>Dubrovin, Ivan O.</creatorcontrib><creatorcontrib>Lunina, Oksana V.</creatorcontrib><creatorcontrib>Denisenko, Ivan A.</creatorcontrib><creatorcontrib>Matasov, Victor M.</creatorcontrib><creatorcontrib>Turova, Irina V.</creatorcontrib><creatorcontrib>Entin, Andrey L.</creatorcontrib><creatorcontrib>Panin, Andrey V.</creatorcontrib><creatorcontrib>Deev, Evgeny V.</creatorcontrib><collection>CrossRef</collection><jtitle>Near surface geophysics (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bricheva, Svetlana S.</au><au>Dubrovin, Ivan O.</au><au>Lunina, Oksana V.</au><au>Denisenko, Ivan A.</au><au>Matasov, Victor M.</au><au>Turova, Irina V.</au><au>Entin, Andrey L.</au><au>Panin, Andrey V.</au><au>Deev, Evgeny V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone</atitle><jtitle>Near surface geophysics (Online)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>19</volume><issue>2</issue><spage>261</spage><epage>277</epage><pages>261-277</pages><issn>1569-4445</issn><eissn>1873-0604</eissn><abstract>ABSTRACT Palaeoseismology studies the footprints of ancient earthquakes to improve the knowledge about the modern seismicity of the territory. A ground‐penetrating radar (GPR), among other geophysical methods, is used for quick determination of shallow stratigraphy – displaced, oblique layers within the fault zone. GPR data interpretation from diverse and complex reflection patterns of the fault zone heavily depends on the interpreter's experience. The range of different fault zone parameters in which this method can be successfully applied has not yet been investigated. We used a numerical simulation of GPR data to determine how GPR images the elements of faults (fault plane, hanging wall, footwall) in comparison with other reflections. Furthermore, we studied which parameters have the most significant impact on GPR wave patterns. We performed a series of numerical models of a fault, changing its geometry with increasing complexity from elementary models to realistic ones. The resulting synthetic profiles allowed finding specific GPR signatures from the fault plane, the hanging wall and the footwall. We collected field GPR data from two different fault zones and examined them for verification.</abstract><doi>10.1002/nsg.12153</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1897-3719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-4445
ispartof Near surface geophysics (Online), 2021-04, Vol.19 (2), p.261-277
issn 1569-4445
1873-0604
language eng
recordid cdi_crossref_primary_10_1002_nsg_12153
source Access via Wiley Online Library
subjects Faults
Finite‐difference
Geohazard
Ground‐penetrating radar
Numerical modelling
title Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20ground%E2%80%90penetrating%20radar%20data%20for%20studying%20the%20geometry%20of%20fault%20zone&rft.jtitle=Near%20surface%20geophysics%20(Online)&rft.au=Bricheva,%20Svetlana%20S.&rft.date=2021-04&rft.volume=19&rft.issue=2&rft.spage=261&rft.epage=277&rft.pages=261-277&rft.issn=1569-4445&rft.eissn=1873-0604&rft_id=info:doi/10.1002/nsg.12153&rft_dat=%3Cwiley_cross%3ENSG12153%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true