A variational framework for fiber-reinforced viscoelastic soft tissues

SUMMARY The mechanical properties of soft biological tissues vary depending on how the internal structure is organized. Classical examples of tissues are ligaments, tendons, skin, arteries, and annulus fibrous. The main element of such tissues is the fibers which are responsible for the tissue resis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2012-03, Vol.89 (13), p.1691-1706
Hauptverfasser: Vassoler, J. M., Reips, L., Fancello, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1706
container_issue 13
container_start_page 1691
container_title International journal for numerical methods in engineering
container_volume 89
creator Vassoler, J. M.
Reips, L.
Fancello, E. A.
description SUMMARY The mechanical properties of soft biological tissues vary depending on how the internal structure is organized. Classical examples of tissues are ligaments, tendons, skin, arteries, and annulus fibrous. The main element of such tissues is the fibers which are responsible for the tissue resistance and the main mechanical characteristic is their viscoelastic anisotropic behavior. The objective of this paper is to extend an existing model for isotropic viscoelastic materials in order to include anisotropy provided by fiber reinforcement. The incorporation of the fiber allows the mechanical behavior of these tissues to be simulated. The model is based on a variational framework in which its mechanical behavior is described by a free energy incremental potential whose local minimization provides the constraints for the internal variable updates for each load increment. The main advantage of this variational approach is the ability to represent different material models depending on the choice of suitable potential functions. Finally, the model is implemented in a finite‐element code in order to perform numerical tests to show the ability of the proposed model to represent fiber‐reinforced materials. The material parameters used in the tests were obtained through parameter identification using experimental data available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.3308
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nme_3308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_NSZH3921_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3338-56753cc6c5863c5203ec7f1aa0479ab42a12f53e35dd5cdb8393373cc5b5593</originalsourceid><addsrcrecordid>eNp1j01LAzEQQIMoWKvgT8hF8JKaZJrN5lhKP4RaDxUELyGbTSB2u1uStbX_3i0tvXkahnnz4CH0yOiAUcpf6o0bAND8CvUYVZJQTuU16nUnRYTK2S26S-mbUsYEhR6ajvDOxGDa0NSmwj6ajds3cY19E7EPhYskulB3m3Ul3oVkG1eZ1AaLU-Nb3IaUfly6RzfeVMk9nGcfraaTj_GcLN5nr-PRglgAyInIpABrMyvyDKzgFJyVnhlDh1KZYsgN416AA1GWwpZFDgpAdh-iEEJBHz2frDY2KUXn9TaGjYkHzag-1uuuXh_rO_TphG5Nsqbqumob0oXnImMK-FFJTtw-VO7wr08v3yZn75kPqXW_F97Etc4kSKE_lzO9XH3NQXGmM_gDcJt3iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A variational framework for fiber-reinforced viscoelastic soft tissues</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vassoler, J. M. ; Reips, L. ; Fancello, E. A.</creator><creatorcontrib>Vassoler, J. M. ; Reips, L. ; Fancello, E. A.</creatorcontrib><description>SUMMARY The mechanical properties of soft biological tissues vary depending on how the internal structure is organized. Classical examples of tissues are ligaments, tendons, skin, arteries, and annulus fibrous. The main element of such tissues is the fibers which are responsible for the tissue resistance and the main mechanical characteristic is their viscoelastic anisotropic behavior. The objective of this paper is to extend an existing model for isotropic viscoelastic materials in order to include anisotropy provided by fiber reinforcement. The incorporation of the fiber allows the mechanical behavior of these tissues to be simulated. The model is based on a variational framework in which its mechanical behavior is described by a free energy incremental potential whose local minimization provides the constraints for the internal variable updates for each load increment. The main advantage of this variational approach is the ability to represent different material models depending on the choice of suitable potential functions. Finally, the model is implemented in a finite‐element code in order to perform numerical tests to show the ability of the proposed model to represent fiber‐reinforced materials. The material parameters used in the tests were obtained through parameter identification using experimental data available in the literature. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3308</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>anisotropy ; Biological and medical sciences ; biomechanics ; Biomechanics. Biorheology ; Blood vessels and receptors ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Fundamental areas of phenomenology (including applications) ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; nonlinear viscoelasticity ; Numerical analysis. Scientific computation ; Physics ; Sciences and techniques of general use ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Tissues, organs and organisms biophysics ; Vertebrates: cardiovascular system</subject><ispartof>International journal for numerical methods in engineering, 2012-03, Vol.89 (13), p.1691-1706</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3338-56753cc6c5863c5203ec7f1aa0479ab42a12f53e35dd5cdb8393373cc5b5593</citedby><cites>FETCH-LOGICAL-c3338-56753cc6c5863c5203ec7f1aa0479ab42a12f53e35dd5cdb8393373cc5b5593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.3308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.3308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25619329$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vassoler, J. M.</creatorcontrib><creatorcontrib>Reips, L.</creatorcontrib><creatorcontrib>Fancello, E. A.</creatorcontrib><title>A variational framework for fiber-reinforced viscoelastic soft tissues</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARY The mechanical properties of soft biological tissues vary depending on how the internal structure is organized. Classical examples of tissues are ligaments, tendons, skin, arteries, and annulus fibrous. The main element of such tissues is the fibers which are responsible for the tissue resistance and the main mechanical characteristic is their viscoelastic anisotropic behavior. The objective of this paper is to extend an existing model for isotropic viscoelastic materials in order to include anisotropy provided by fiber reinforcement. The incorporation of the fiber allows the mechanical behavior of these tissues to be simulated. The model is based on a variational framework in which its mechanical behavior is described by a free energy incremental potential whose local minimization provides the constraints for the internal variable updates for each load increment. The main advantage of this variational approach is the ability to represent different material models depending on the choice of suitable potential functions. Finally, the model is implemented in a finite‐element code in order to perform numerical tests to show the ability of the proposed model to represent fiber‐reinforced materials. The material parameters used in the tests were obtained through parameter identification using experimental data available in the literature. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>anisotropy</subject><subject>Biological and medical sciences</subject><subject>biomechanics</subject><subject>Biomechanics. Biorheology</subject><subject>Blood vessels and receptors</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>nonlinear viscoelasticity</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Vertebrates: cardiovascular system</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1j01LAzEQQIMoWKvgT8hF8JKaZJrN5lhKP4RaDxUELyGbTSB2u1uStbX_3i0tvXkahnnz4CH0yOiAUcpf6o0bAND8CvUYVZJQTuU16nUnRYTK2S26S-mbUsYEhR6ajvDOxGDa0NSmwj6ajds3cY19E7EPhYskulB3m3Ul3oVkG1eZ1AaLU-Nb3IaUfly6RzfeVMk9nGcfraaTj_GcLN5nr-PRglgAyInIpABrMyvyDKzgFJyVnhlDh1KZYsgN416AA1GWwpZFDgpAdh-iEEJBHz2frDY2KUXn9TaGjYkHzag-1uuuXh_rO_TphG5Nsqbqumob0oXnImMK-FFJTtw-VO7wr08v3yZn75kPqXW_F97Etc4kSKE_lzO9XH3NQXGmM_gDcJt3iw</recordid><startdate>20120330</startdate><enddate>20120330</enddate><creator>Vassoler, J. M.</creator><creator>Reips, L.</creator><creator>Fancello, E. A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120330</creationdate><title>A variational framework for fiber-reinforced viscoelastic soft tissues</title><author>Vassoler, J. M. ; Reips, L. ; Fancello, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3338-56753cc6c5863c5203ec7f1aa0479ab42a12f53e35dd5cdb8393373cc5b5593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>anisotropy</topic><topic>Biological and medical sciences</topic><topic>biomechanics</topic><topic>Biomechanics. Biorheology</topic><topic>Blood vessels and receptors</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>nonlinear viscoelasticity</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vassoler, J. M.</creatorcontrib><creatorcontrib>Reips, L.</creatorcontrib><creatorcontrib>Fancello, E. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vassoler, J. M.</au><au>Reips, L.</au><au>Fancello, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational framework for fiber-reinforced viscoelastic soft tissues</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2012-03-30</date><risdate>2012</risdate><volume>89</volume><issue>13</issue><spage>1691</spage><epage>1706</epage><pages>1691-1706</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARY The mechanical properties of soft biological tissues vary depending on how the internal structure is organized. Classical examples of tissues are ligaments, tendons, skin, arteries, and annulus fibrous. The main element of such tissues is the fibers which are responsible for the tissue resistance and the main mechanical characteristic is their viscoelastic anisotropic behavior. The objective of this paper is to extend an existing model for isotropic viscoelastic materials in order to include anisotropy provided by fiber reinforcement. The incorporation of the fiber allows the mechanical behavior of these tissues to be simulated. The model is based on a variational framework in which its mechanical behavior is described by a free energy incremental potential whose local minimization provides the constraints for the internal variable updates for each load increment. The main advantage of this variational approach is the ability to represent different material models depending on the choice of suitable potential functions. Finally, the model is implemented in a finite‐element code in order to perform numerical tests to show the ability of the proposed model to represent fiber‐reinforced materials. The material parameters used in the tests were obtained through parameter identification using experimental data available in the literature. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.3308</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2012-03, Vol.89 (13), p.1691-1706
issn 0029-5981
1097-0207
language eng
recordid cdi_crossref_primary_10_1002_nme_3308
source Wiley Online Library Journals Frontfile Complete
subjects anisotropy
Biological and medical sciences
biomechanics
Biomechanics. Biorheology
Blood vessels and receptors
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Fundamental areas of phenomenology (including applications)
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
nonlinear viscoelasticity
Numerical analysis. Scientific computation
Physics
Sciences and techniques of general use
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Tissues, organs and organisms biophysics
Vertebrates: cardiovascular system
title A variational framework for fiber-reinforced viscoelastic soft tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20framework%20for%20fiber-reinforced%20viscoelastic%20soft%20tissues&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Vassoler,%20J.%20M.&rft.date=2012-03-30&rft.volume=89&rft.issue=13&rft.spage=1691&rft.epage=1706&rft.pages=1691-1706&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3308&rft_dat=%3Cistex_cross%3Eark_67375_WNG_NSZH3921_6%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true