On the non-singular traction-BIE in elasticity
The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and th...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 1994-06, Vol.37 (12), p.2041-2072 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2072 |
---|---|
container_issue | 12 |
container_start_page | 2041 |
container_title | International journal for numerical methods in engineering |
container_volume | 37 |
creator | Huang, Q. Cruse, T. A. |
description | The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed. |
doi_str_mv | 10.1002/nme.1620371204 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nme_1620371204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NME1620371204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</originalsourceid><addsrcrecordid>eNqFjz1PwzAURS0EEqWwMmdgTfDzRxyPULWlamkXEIjFMo4NhjSt7CDIvydVUBET05OuzrlPF6FzwBlgTC7rtc0gJ5gKIJgdoAFgKVJMsDhEgw6QKZcFHKOTGN8wBuCYDlC2qpPm1Sb1pk6jr18-Kh2SJmjT-C65no0TXye20rHxxjftKTpyuor27OcO0f1kfDe6SRer6Wx0tUgNySVLKbbOiKIQHCR3xsmcUsZz6QjTubAS87JgRjr5DGVpBbCSMCl5QbhmwlFKhyjre03YxBisU9vg1zq0CrDarVXdWvW7thMuemGro9GVC7o2Pu4tBpCLYofJHvv0lW3_KVXL2_GfF2nv-tjYr72rw7vKBRVcPSynij6KCTwt5mpOvwFYgXI7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the non-singular traction-BIE in elasticity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Q. ; Cruse, T. A.</creator><creatorcontrib>Huang, Q. ; Cruse, T. A.</creatorcontrib><description>The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620371204</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 1994-06, Vol.37 (12), p.2041-2072</ispartof><rights>Copyright © 1994 John Wiley & Sons, Ltd</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</citedby><cites>FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620371204$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620371204$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4116784$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Cruse, T. A.</creatorcontrib><title>On the non-singular traction-BIE in elasticity</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAURS0EEqWwMmdgTfDzRxyPULWlamkXEIjFMo4NhjSt7CDIvydVUBET05OuzrlPF6FzwBlgTC7rtc0gJ5gKIJgdoAFgKVJMsDhEgw6QKZcFHKOTGN8wBuCYDlC2qpPm1Sb1pk6jr18-Kh2SJmjT-C65no0TXye20rHxxjftKTpyuor27OcO0f1kfDe6SRer6Wx0tUgNySVLKbbOiKIQHCR3xsmcUsZz6QjTubAS87JgRjr5DGVpBbCSMCl5QbhmwlFKhyjre03YxBisU9vg1zq0CrDarVXdWvW7thMuemGro9GVC7o2Pu4tBpCLYofJHvv0lW3_KVXL2_GfF2nv-tjYr72rw7vKBRVcPSynij6KCTwt5mpOvwFYgXI7</recordid><startdate>19940630</startdate><enddate>19940630</enddate><creator>Huang, Q.</creator><creator>Cruse, T. A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940630</creationdate><title>On the non-singular traction-BIE in elasticity</title><author>Huang, Q. ; Cruse, T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Cruse, T. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Q.</au><au>Cruse, T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the non-singular traction-BIE in elasticity</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1994-06-30</date><risdate>1994</risdate><volume>37</volume><issue>12</issue><spage>2041</spage><epage>2072</epage><pages>2041-2072</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed.</abstract><cop>New York</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1620371204</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 1994-06, Vol.37 (12), p.2041-2072 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_crossref_primary_10_1002_nme_1620371204 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | On the non-singular traction-BIE in elasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20non-singular%20traction-BIE%20in%20elasticity&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Huang,%20Q.&rft.date=1994-06-30&rft.volume=37&rft.issue=12&rft.spage=2041&rft.epage=2072&rft.pages=2041-2072&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1620371204&rft_dat=%3Cwiley_cross%3ENME1620371204%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |