On the non-singular traction-BIE in elasticity

The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1994-06, Vol.37 (12), p.2041-2072
Hauptverfasser: Huang, Q., Cruse, T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2072
container_issue 12
container_start_page 2041
container_title International journal for numerical methods in engineering
container_volume 37
creator Huang, Q.
Cruse, T. A.
description The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed.
doi_str_mv 10.1002/nme.1620371204
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nme_1620371204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NME1620371204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</originalsourceid><addsrcrecordid>eNqFjz1PwzAURS0EEqWwMmdgTfDzRxyPULWlamkXEIjFMo4NhjSt7CDIvydVUBET05OuzrlPF6FzwBlgTC7rtc0gJ5gKIJgdoAFgKVJMsDhEgw6QKZcFHKOTGN8wBuCYDlC2qpPm1Sb1pk6jr18-Kh2SJmjT-C65no0TXye20rHxxjftKTpyuor27OcO0f1kfDe6SRer6Wx0tUgNySVLKbbOiKIQHCR3xsmcUsZz6QjTubAS87JgRjr5DGVpBbCSMCl5QbhmwlFKhyjre03YxBisU9vg1zq0CrDarVXdWvW7thMuemGro9GVC7o2Pu4tBpCLYofJHvv0lW3_KVXL2_GfF2nv-tjYr72rw7vKBRVcPSynij6KCTwt5mpOvwFYgXI7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the non-singular traction-BIE in elasticity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Q. ; Cruse, T. A.</creator><creatorcontrib>Huang, Q. ; Cruse, T. A.</creatorcontrib><description>The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620371204</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 1994-06, Vol.37 (12), p.2041-2072</ispartof><rights>Copyright © 1994 John Wiley &amp; Sons, Ltd</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</citedby><cites>FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620371204$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620371204$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4116784$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Cruse, T. A.</creatorcontrib><title>On the non-singular traction-BIE in elasticity</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAURS0EEqWwMmdgTfDzRxyPULWlamkXEIjFMo4NhjSt7CDIvydVUBET05OuzrlPF6FzwBlgTC7rtc0gJ5gKIJgdoAFgKVJMsDhEgw6QKZcFHKOTGN8wBuCYDlC2qpPm1Sb1pk6jr18-Kh2SJmjT-C65no0TXye20rHxxjftKTpyuor27OcO0f1kfDe6SRer6Wx0tUgNySVLKbbOiKIQHCR3xsmcUsZz6QjTubAS87JgRjr5DGVpBbCSMCl5QbhmwlFKhyjre03YxBisU9vg1zq0CrDarVXdWvW7thMuemGro9GVC7o2Pu4tBpCLYofJHvv0lW3_KVXL2_GfF2nv-tjYr72rw7vKBRVcPSynij6KCTwt5mpOvwFYgXI7</recordid><startdate>19940630</startdate><enddate>19940630</enddate><creator>Huang, Q.</creator><creator>Cruse, T. A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940630</creationdate><title>On the non-singular traction-BIE in elasticity</title><author>Huang, Q. ; Cruse, T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2694-30efc78875195fcf96334569f24a67e905d84c9f9b1dde714d24995825a47f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Cruse, T. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Q.</au><au>Cruse, T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the non-singular traction-BIE in elasticity</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1994-06-30</date><risdate>1994</risdate><volume>37</volume><issue>12</issue><spage>2041</spage><epage>2072</epage><pages>2041-2072</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The work reported herein develops a generalized traction‐BIE formulation which involves only weakly singular integrals (in the three‐dimensional problem) or totally regular integrals (in the two‐dimensional problem). The first step deals with the terms in the Somigliana displacement identity, and then the derivatives of these terms. The only conditions required for the existence of the traction‐BIE and the related Somigliana stress identity are weak continuity of the in‐plane derivatives of the surface displacements and of the surface tractions. It is shown that the Cauchy Principal Value (CPV) interpretations so commonly used in BIE developments are unnecessary. The formulation is established not only at a smooth boundary point, but also at a corner point. The extension of the non‐singular formulation to discontinuous boundary tractions and tangential derivatives of the boundary displacements applicable to a generalized problem statement as well as the usual BEM implementations is also shown. In the demonstrated formulation, the source points are located directly at the boundary nodes and non‐conformal elements are not needed.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1620371204</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1994-06, Vol.37 (12), p.2041-2072
issn 0029-5981
1097-0207
language eng
recordid cdi_crossref_primary_10_1002_nme_1620371204
source Wiley Online Library Journals Frontfile Complete
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title On the non-singular traction-BIE in elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20non-singular%20traction-BIE%20in%20elasticity&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Huang,%20Q.&rft.date=1994-06-30&rft.volume=37&rft.issue=12&rft.spage=2041&rft.epage=2072&rft.pages=2041-2072&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1620371204&rft_dat=%3Cwiley_cross%3ENME1620371204%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true