Explicit forms for the tangent modulus tensor in viscoplastic stress analysis
Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions w...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 1984-02, Vol.20 (2), p.315-319 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 319 |
---|---|
container_issue | 2 |
container_start_page | 315 |
container_title | International journal for numerical methods in engineering |
container_volume | 20 |
creator | Brockman, R. A. |
description | Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples. |
doi_str_mv | 10.1002/nme.1620200210 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nme_1620200210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NME1620200210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKtXzzl43ZpsTLI5Sqmt0FYEReglpGmi0e3uspNq--9NWal48jLDm3nfDDyELikZUELy62rtBlTkJE-CkiPUo0TJLEl5jHpppjKuCnqKzgDeCaGUE9ZDs9G2KYMNEfu6XcO-4vjmcDTVq6siXterTbkBHF0FaRUq_BnA1k1pIAaLIbYOAJvKlDsIcI5OvCnBXfz0Pnq-Gz0NJ9n0YXw_vJ1mlvEbkvml9d4JzpyyVgjvWU5WXiyJl17JpSImbZVjXFAhrbXGE864V6IQTlC7Yn006O7atgZonddNG9am3WlK9D4MncLQv2Ek4KoDGgPWlL41lQ1woIpCcs6LZFOd7SuUbvfPUT2fjf68yDo2QHTbA2vaDy0kk1y_zMd6sngUw4Wcaca-AZb-gQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brockman, R. A.</creator><creatorcontrib>Brockman, R. A.</creatorcontrib><description>Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620200210</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 1984-02, Vol.20 (2), p.315-319</ispartof><rights>Copyright © 1984 John Wiley & Sons, Ltd</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</citedby><cites>FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620200210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620200210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8875558$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brockman, R. A.</creatorcontrib><title>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKtXzzl43ZpsTLI5Sqmt0FYEReglpGmi0e3uspNq--9NWal48jLDm3nfDDyELikZUELy62rtBlTkJE-CkiPUo0TJLEl5jHpppjKuCnqKzgDeCaGUE9ZDs9G2KYMNEfu6XcO-4vjmcDTVq6siXterTbkBHF0FaRUq_BnA1k1pIAaLIbYOAJvKlDsIcI5OvCnBXfz0Pnq-Gz0NJ9n0YXw_vJ1mlvEbkvml9d4JzpyyVgjvWU5WXiyJl17JpSImbZVjXFAhrbXGE864V6IQTlC7Yn006O7atgZonddNG9am3WlK9D4MncLQv2Ek4KoDGgPWlL41lQ1woIpCcs6LZFOd7SuUbvfPUT2fjf68yDo2QHTbA2vaDy0kk1y_zMd6sngUw4Wcaca-AZb-gQI</recordid><startdate>198402</startdate><enddate>198402</enddate><creator>Brockman, R. A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198402</creationdate><title>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</title><author>Brockman, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brockman, R. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brockman, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1984-02</date><risdate>1984</risdate><volume>20</volume><issue>2</issue><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples.</abstract><cop>New York</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1620200210</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 1984-02, Vol.20 (2), p.315-319 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_crossref_primary_10_1002_nme_1620200210 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Physics Solid mechanics Structural and continuum mechanics |
title | Explicit forms for the tangent modulus tensor in viscoplastic stress analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20forms%20for%20the%20tangent%20modulus%20tensor%20in%20viscoplastic%20stress%20analysis&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Brockman,%20R.%20A.&rft.date=1984-02&rft.volume=20&rft.issue=2&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1620200210&rft_dat=%3Cwiley_cross%3ENME1620200210%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |