Explicit forms for the tangent modulus tensor in viscoplastic stress analysis

Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1984-02, Vol.20 (2), p.315-319
1. Verfasser: Brockman, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue 2
container_start_page 315
container_title International journal for numerical methods in engineering
container_volume 20
creator Brockman, R. A.
description Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples.
doi_str_mv 10.1002/nme.1620200210
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nme_1620200210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NME1620200210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKtXzzl43ZpsTLI5Sqmt0FYEReglpGmi0e3uspNq--9NWal48jLDm3nfDDyELikZUELy62rtBlTkJE-CkiPUo0TJLEl5jHpppjKuCnqKzgDeCaGUE9ZDs9G2KYMNEfu6XcO-4vjmcDTVq6siXterTbkBHF0FaRUq_BnA1k1pIAaLIbYOAJvKlDsIcI5OvCnBXfz0Pnq-Gz0NJ9n0YXw_vJ1mlvEbkvml9d4JzpyyVgjvWU5WXiyJl17JpSImbZVjXFAhrbXGE864V6IQTlC7Yn006O7atgZonddNG9am3WlK9D4MncLQv2Ek4KoDGgPWlL41lQ1woIpCcs6LZFOd7SuUbvfPUT2fjf68yDo2QHTbA2vaDy0kk1y_zMd6sngUw4Wcaca-AZb-gQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brockman, R. A.</creator><creatorcontrib>Brockman, R. A.</creatorcontrib><description>Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620200210</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 1984-02, Vol.20 (2), p.315-319</ispartof><rights>Copyright © 1984 John Wiley &amp; Sons, Ltd</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</citedby><cites>FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620200210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620200210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8875558$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brockman, R. A.</creatorcontrib><title>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKtXzzl43ZpsTLI5Sqmt0FYEReglpGmi0e3uspNq--9NWal48jLDm3nfDDyELikZUELy62rtBlTkJE-CkiPUo0TJLEl5jHpppjKuCnqKzgDeCaGUE9ZDs9G2KYMNEfu6XcO-4vjmcDTVq6siXterTbkBHF0FaRUq_BnA1k1pIAaLIbYOAJvKlDsIcI5OvCnBXfz0Pnq-Gz0NJ9n0YXw_vJ1mlvEbkvml9d4JzpyyVgjvWU5WXiyJl17JpSImbZVjXFAhrbXGE864V6IQTlC7Yn006O7atgZonddNG9am3WlK9D4MncLQv2Ek4KoDGgPWlL41lQ1woIpCcs6LZFOd7SuUbvfPUT2fjf68yDo2QHTbA2vaDy0kk1y_zMd6sngUw4Wcaca-AZb-gQI</recordid><startdate>198402</startdate><enddate>198402</enddate><creator>Brockman, R. A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198402</creationdate><title>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</title><author>Brockman, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3540-fbcffe653e9cc66ff320df6b0f7f97b90afe69e356167cccaf0535f9686e61cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brockman, R. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brockman, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit forms for the tangent modulus tensor in viscoplastic stress analysis</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1984-02</date><risdate>1984</risdate><volume>20</volume><issue>2</issue><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Viscoplastic constitutive models typically lead to compliance (strain–stress) relationships, which must be inverted for use in the finite element displacement method. Computational requirements can be increased significantly for models of practical size due to the large number of matrix inversions which are necessary. This paper describes a method of obtaining the required stress–strain relations analytically, thus eliminating the need for numerous matrix inversions in the solution. The technique is applicable to a number of commonly‐used viscoplastic models, as demonstrated in the examples.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1620200210</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1984-02, Vol.20 (2), p.315-319
issn 0029-5981
1097-0207
language eng
recordid cdi_crossref_primary_10_1002_nme_1620200210
source Wiley Online Library Journals Frontfile Complete
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Physics
Solid mechanics
Structural and continuum mechanics
title Explicit forms for the tangent modulus tensor in viscoplastic stress analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20forms%20for%20the%20tangent%20modulus%20tensor%20in%20viscoplastic%20stress%20analysis&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Brockman,%20R.%20A.&rft.date=1984-02&rft.volume=20&rft.issue=2&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1620200210&rft_dat=%3Cwiley_cross%3ENME1620200210%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true