Numerical methods for Orr-Sommerfeld problems

Five previously employed numerical methods for the solution of Orr–Sommerfeld problems have been compared to each other and to a new method, the differential method of near‐orthonormalized integration. Brief summaries of each method are included. The comparison, based on seven factors, reflects the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1972-03, Vol.4 (2), p.195-206
Hauptverfasser: Gersting Jr, John M., Jankowski, Daniel F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 2
container_start_page 195
container_title International journal for numerical methods in engineering
container_volume 4
creator Gersting Jr, John M.
Jankowski, Daniel F.
description Five previously employed numerical methods for the solution of Orr–Sommerfeld problems have been compared to each other and to a new method, the differential method of near‐orthonormalized integration. Brief summaries of each method are included. The comparison, based on seven factors, reflects the results of an implementation of a computer program for each method for the classic Orr–Sommerfeld problem of plane Poiseuille flow. This comparison shows that the new method and the algebraic finite difference method are currently the best available numerical solution methods for the problems in this class, with the new method being less problem dependent.
doi_str_mv 10.1002/nme.1620040206
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nme_1620040206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_TPFVJT72_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3086-c2ab9fffc884f09303ecd2d91d83f1b7e71dd8ce7543b9178b95514f67b0afc3</originalsourceid><addsrcrecordid>eNqFj01LxDAURYMoWEe3rvsHMr7XtE2ylDIzKmNHsOgytPnAamuHZETn31upKK5cvQvvnguHkHOEOQIkF6-9nWOeAKSQQH5AIgTJ6Zj5IYnGgqSZFHhMTkJ4BkDMgEWElm-99a2uu7i3u6fBhNgNPt54T--Hfnw525l464ems304JUeu7oI9-74zUi0XVXFF15vVdXG5ppqByKlO6kY657QQqQPJgFltEiPRCOaw4ZajMUJbnqWskchFI7MMU5fzBmqn2YzMp1nthxC8dWrr2772e4WgvlzV6Kp-XUdATsB729n9P21V3i7-sHRi27CzHz9s7V9UzhnP1GO5UtXd8uGm4okq2CdQCGcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical methods for Orr-Sommerfeld problems</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Gersting Jr, John M. ; Jankowski, Daniel F.</creator><creatorcontrib>Gersting Jr, John M. ; Jankowski, Daniel F.</creatorcontrib><description>Five previously employed numerical methods for the solution of Orr–Sommerfeld problems have been compared to each other and to a new method, the differential method of near‐orthonormalized integration. Brief summaries of each method are included. The comparison, based on seven factors, reflects the results of an implementation of a computer program for each method for the classic Orr–Sommerfeld problem of plane Poiseuille flow. This comparison shows that the new method and the algebraic finite difference method are currently the best available numerical solution methods for the problems in this class, with the new method being less problem dependent.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620040206</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><ispartof>International journal for numerical methods in engineering, 1972-03, Vol.4 (2), p.195-206</ispartof><rights>Copyright © 1972 John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3086-c2ab9fffc884f09303ecd2d91d83f1b7e71dd8ce7543b9178b95514f67b0afc3</citedby><cites>FETCH-LOGICAL-c3086-c2ab9fffc884f09303ecd2d91d83f1b7e71dd8ce7543b9178b95514f67b0afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620040206$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620040206$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Gersting Jr, John M.</creatorcontrib><creatorcontrib>Jankowski, Daniel F.</creatorcontrib><title>Numerical methods for Orr-Sommerfeld problems</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Five previously employed numerical methods for the solution of Orr–Sommerfeld problems have been compared to each other and to a new method, the differential method of near‐orthonormalized integration. Brief summaries of each method are included. The comparison, based on seven factors, reflects the results of an implementation of a computer program for each method for the classic Orr–Sommerfeld problem of plane Poiseuille flow. This comparison shows that the new method and the algebraic finite difference method are currently the best available numerical solution methods for the problems in this class, with the new method being less problem dependent.</description><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNqFj01LxDAURYMoWEe3rvsHMr7XtE2ylDIzKmNHsOgytPnAamuHZETn31upKK5cvQvvnguHkHOEOQIkF6-9nWOeAKSQQH5AIgTJ6Zj5IYnGgqSZFHhMTkJ4BkDMgEWElm-99a2uu7i3u6fBhNgNPt54T--Hfnw525l464ems304JUeu7oI9-74zUi0XVXFF15vVdXG5ppqByKlO6kY657QQqQPJgFltEiPRCOaw4ZajMUJbnqWskchFI7MMU5fzBmqn2YzMp1nthxC8dWrr2772e4WgvlzV6Kp-XUdATsB729n9P21V3i7-sHRi27CzHz9s7V9UzhnP1GO5UtXd8uGm4okq2CdQCGcc</recordid><startdate>197203</startdate><enddate>197203</enddate><creator>Gersting Jr, John M.</creator><creator>Jankowski, Daniel F.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197203</creationdate><title>Numerical methods for Orr-Sommerfeld problems</title><author>Gersting Jr, John M. ; Jankowski, Daniel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3086-c2ab9fffc884f09303ecd2d91d83f1b7e71dd8ce7543b9178b95514f67b0afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gersting Jr, John M.</creatorcontrib><creatorcontrib>Jankowski, Daniel F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gersting Jr, John M.</au><au>Jankowski, Daniel F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical methods for Orr-Sommerfeld problems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1972-03</date><risdate>1972</risdate><volume>4</volume><issue>2</issue><spage>195</spage><epage>206</epage><pages>195-206</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Five previously employed numerical methods for the solution of Orr–Sommerfeld problems have been compared to each other and to a new method, the differential method of near‐orthonormalized integration. Brief summaries of each method are included. The comparison, based on seven factors, reflects the results of an implementation of a computer program for each method for the classic Orr–Sommerfeld problem of plane Poiseuille flow. This comparison shows that the new method and the algebraic finite difference method are currently the best available numerical solution methods for the problems in this class, with the new method being less problem dependent.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1620040206</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1972-03, Vol.4 (2), p.195-206
issn 0029-5981
1097-0207
language eng
recordid cdi_crossref_primary_10_1002_nme_1620040206
source Wiley Online Library - AutoHoldings Journals
title Numerical methods for Orr-Sommerfeld problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20methods%20for%20Orr-Sommerfeld%20problems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Gersting%20Jr,%20John%20M.&rft.date=1972-03&rft.volume=4&rft.issue=2&rft.spage=195&rft.epage=206&rft.pages=195-206&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.1620040206&rft_dat=%3Cistex_cross%3Eark_67375_WNG_TPFVJT72_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true