Exponential data fitting using multilinear algebra: the single-channel and multi-channel case

There is a wide variety of signal processing applications in which the data are assumed to be modelled as a sum of exponentially damped sinusoids. Many subspace‐based approaches (such as ESPRIT, matrix pencil, Prony, etc.) aim to estimate the parameters of this model. Typically, the data are arrange...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2005-10, Vol.12 (8), p.809-826
Hauptverfasser: Papy, J. M., De Lathauwer, L., Van Huffel, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 826
container_issue 8
container_start_page 809
container_title Numerical linear algebra with applications
container_volume 12
creator Papy, J. M.
De Lathauwer, L.
Van Huffel, S.
description There is a wide variety of signal processing applications in which the data are assumed to be modelled as a sum of exponentially damped sinusoids. Many subspace‐based approaches (such as ESPRIT, matrix pencil, Prony, etc.) aim to estimate the parameters of this model. Typically, the data are arranged in Toeplitz or Hankel matrices and suitable parameter estimates are obtained via a truncated singular value decomposition (SVD) of the data matrix. It is shown that the parameter accuracy may be improved by arranging single‐channel or multi‐channel data in a higher‐order tensor and estimating the model parameters via a multilinear generalization of the SVD. The algorithm is presented and its performance is illustrated by means of simulations. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.453
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nla_453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NLA453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2993-dacc32ec0dad2b47f78990dbde84e6f46fb38f78c437adca505aa5cb7e26915e3</originalsourceid><addsrcrecordid>eNp10FFLwzAQB_AgCs4pfoW--SCdadO0jW9zzCmWiTDxScI1uW7RLBtNh9u3t6WyN1_ujrsf9_An5Dqio4jS-M5ZGCWcnZBBRIUII07T027OaMhZzM_JhfdflNKUCzYgn9P9duPQNQZsoKGBoDJNY9wy2Pmurne2MdY4hDoAu8SyhvugWWHQXS2GagXOoQ3A6d4eNwo8XpKzCqzHq78-JO-P08XkKSxeZ8-TcRGqWAgWalCKxaioBh2XSVZluRBUlxrzBNMqSauS5e1SJSwDrYBTDsBVmWGciogjG5Kb_q-qN97XWMltbdZQH2REZZeKbFORbSqtvO3lj7F4-I_JeTHuddhr4xvcHzXU3zLNWMblx3wmH_JJsngRb3LBfgFV73RX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exponential data fitting using multilinear algebra: the single-channel and multi-channel case</title><source>Access via Wiley Online Library</source><creator>Papy, J. M. ; De Lathauwer, L. ; Van Huffel, S.</creator><creatorcontrib>Papy, J. M. ; De Lathauwer, L. ; Van Huffel, S.</creatorcontrib><description>There is a wide variety of signal processing applications in which the data are assumed to be modelled as a sum of exponentially damped sinusoids. Many subspace‐based approaches (such as ESPRIT, matrix pencil, Prony, etc.) aim to estimate the parameters of this model. Typically, the data are arranged in Toeplitz or Hankel matrices and suitable parameter estimates are obtained via a truncated singular value decomposition (SVD) of the data matrix. It is shown that the parameter accuracy may be improved by arranging single‐channel or multi‐channel data in a higher‐order tensor and estimating the model parameters via a multilinear generalization of the SVD. The algorithm is presented and its performance is illustrated by means of simulations. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.453</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>exponentially damped sinusoids ; Hankel ; higher-order tensor ; multilinear algebra ; signal processing ; SVD ; Toeplitz</subject><ispartof>Numerical linear algebra with applications, 2005-10, Vol.12 (8), p.809-826</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2993-dacc32ec0dad2b47f78990dbde84e6f46fb38f78c437adca505aa5cb7e26915e3</citedby><cites>FETCH-LOGICAL-c2993-dacc32ec0dad2b47f78990dbde84e6f46fb38f78c437adca505aa5cb7e26915e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.453$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.453$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Papy, J. M.</creatorcontrib><creatorcontrib>De Lathauwer, L.</creatorcontrib><creatorcontrib>Van Huffel, S.</creatorcontrib><title>Exponential data fitting using multilinear algebra: the single-channel and multi-channel case</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>There is a wide variety of signal processing applications in which the data are assumed to be modelled as a sum of exponentially damped sinusoids. Many subspace‐based approaches (such as ESPRIT, matrix pencil, Prony, etc.) aim to estimate the parameters of this model. Typically, the data are arranged in Toeplitz or Hankel matrices and suitable parameter estimates are obtained via a truncated singular value decomposition (SVD) of the data matrix. It is shown that the parameter accuracy may be improved by arranging single‐channel or multi‐channel data in a higher‐order tensor and estimating the model parameters via a multilinear generalization of the SVD. The algorithm is presented and its performance is illustrated by means of simulations. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>exponentially damped sinusoids</subject><subject>Hankel</subject><subject>higher-order tensor</subject><subject>multilinear algebra</subject><subject>signal processing</subject><subject>SVD</subject><subject>Toeplitz</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQB_AgCs4pfoW--SCdadO0jW9zzCmWiTDxScI1uW7RLBtNh9u3t6WyN1_ujrsf9_An5Dqio4jS-M5ZGCWcnZBBRIUII07T027OaMhZzM_JhfdflNKUCzYgn9P9duPQNQZsoKGBoDJNY9wy2Pmurne2MdY4hDoAu8SyhvugWWHQXS2GagXOoQ3A6d4eNwo8XpKzCqzHq78-JO-P08XkKSxeZ8-TcRGqWAgWalCKxaioBh2XSVZluRBUlxrzBNMqSauS5e1SJSwDrYBTDsBVmWGciogjG5Kb_q-qN97XWMltbdZQH2REZZeKbFORbSqtvO3lj7F4-I_JeTHuddhr4xvcHzXU3zLNWMblx3wmH_JJsngRb3LBfgFV73RX</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Papy, J. M.</creator><creator>De Lathauwer, L.</creator><creator>Van Huffel, S.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200510</creationdate><title>Exponential data fitting using multilinear algebra: the single-channel and multi-channel case</title><author>Papy, J. M. ; De Lathauwer, L. ; Van Huffel, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2993-dacc32ec0dad2b47f78990dbde84e6f46fb38f78c437adca505aa5cb7e26915e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>exponentially damped sinusoids</topic><topic>Hankel</topic><topic>higher-order tensor</topic><topic>multilinear algebra</topic><topic>signal processing</topic><topic>SVD</topic><topic>Toeplitz</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papy, J. M.</creatorcontrib><creatorcontrib>De Lathauwer, L.</creatorcontrib><creatorcontrib>Van Huffel, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papy, J. M.</au><au>De Lathauwer, L.</au><au>Van Huffel, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential data fitting using multilinear algebra: the single-channel and multi-channel case</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2005-10</date><risdate>2005</risdate><volume>12</volume><issue>8</issue><spage>809</spage><epage>826</epage><pages>809-826</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>There is a wide variety of signal processing applications in which the data are assumed to be modelled as a sum of exponentially damped sinusoids. Many subspace‐based approaches (such as ESPRIT, matrix pencil, Prony, etc.) aim to estimate the parameters of this model. Typically, the data are arranged in Toeplitz or Hankel matrices and suitable parameter estimates are obtained via a truncated singular value decomposition (SVD) of the data matrix. It is shown that the parameter accuracy may be improved by arranging single‐channel or multi‐channel data in a higher‐order tensor and estimating the model parameters via a multilinear generalization of the SVD. The algorithm is presented and its performance is illustrated by means of simulations. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nla.453</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2005-10, Vol.12 (8), p.809-826
issn 1070-5325
1099-1506
language eng
recordid cdi_crossref_primary_10_1002_nla_453
source Access via Wiley Online Library
subjects exponentially damped sinusoids
Hankel
higher-order tensor
multilinear algebra
signal processing
SVD
Toeplitz
title Exponential data fitting using multilinear algebra: the single-channel and multi-channel case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20data%20fitting%20using%20multilinear%20algebra:%20the%20single-channel%20and%20multi-channel%20case&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Papy,%20J.%20M.&rft.date=2005-10&rft.volume=12&rft.issue=8&rft.spage=809&rft.epage=826&rft.pages=809-826&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.453&rft_dat=%3Cwiley_cross%3ENLA453%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true