Stewart's pivoted QLP decomposition for low-rank matrices

The pivoted QLP decomposition, introduced by Stewart, represents the first two steps in an algorithm which approximates the SVD. If A is an m‐by‐n matrix, the matrix A∏0 is first factored as A∏0 = QR, and then the matrix RT∏1 is factored as RT∏1 = PLT, resulting in A = Q∏1LPT∏ 0T, with Q and P ortho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2005-03, Vol.12 (2-3), p.153-159
Hauptverfasser: Huckaby, D. A., Chan, T. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2-3
container_start_page 153
container_title Numerical linear algebra with applications
container_volume 12
creator Huckaby, D. A.
Chan, T. F.
description The pivoted QLP decomposition, introduced by Stewart, represents the first two steps in an algorithm which approximates the SVD. If A is an m‐by‐n matrix, the matrix A∏0 is first factored as A∏0 = QR, and then the matrix RT∏1 is factored as RT∏1 = PLT, resulting in A = Q∏1LPT∏ 0T, with Q and P orthogonal, L lower‐triangular, and ∏0 and ∏1 permutation matrices. The Q and P matrices provide approximations of the left and right singular subspaces, and the diagonal elements of L are excellent approximations of the singular values of A. Stewart observed that pivoting is not necessary in the second step, allowing one to efficiently truncate the decomposition, computing only the first few columns of R and L and choosing the stopping point dynamically. In this paper, we demonstrate that this truncating actually works by extending our theory for the complete pivoted QLP decomposition (UCLA CAM Report # 02‐29, 2002). In particular, say there is a gap between σk and σk+1, and partition the matrix L into diagonal blocks L11 and L22 and off‐diagonal block L21, where L11 is k‐by‐k. If we compute only the block L11, the convergence of (σj(L11)−1 − σ j−1)/σ j−1 for j = 1,...,k are all quadratic in the gap ratio σk+1/σk. Hence, if the gap ratio is small, as it usually is when A has numerical rank k (independent of m and n), then all of the singular values are likely to be well approximated. This truncated pivoted QLP decomposition can be computed in O(mnk) time, making it ideal for accurate SVD approximations of low‐rank matrices. Copyright © 2004 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.404
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nla_404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_FP2ZWW82_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2994-c3ce2ae7c0b0ea47cc80d1a860089e0e13e41b224907382be388c09a22193d173</originalsourceid><addsrcrecordid>eNp1z81KAzEUhuEgCtYq3sLsupDUk5-ZTJal2CoMtaJScBPSzCnETpuSDNbevS0j7lyds3j44CXklsGQAfD7bWOHEuQZ6THQmrIcivPTr4DmgueX5CqlTwAoci16RL-2uLexHaRs579Ci3X2Us2zGl3Y7ELyrQ_bbBVi1oQ9jXa7zja2jd5huiYXK9skvPm9ffI-eXgbP9Lqefo0HlXUca0ldcIht6gcLAGtVM6VUDNbFgClRkAmULIl51KDEiVfoihLB9pyzrSomRJ9Muh2XQwpRVyZXfQbGw-GgTkVm2OxORYf5V0n977Bw3_MzKpRp2mnfWrx-0_buDaFEio3i9nUTOb8Y7EouZHiB8pDZNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stewart's pivoted QLP decomposition for low-rank matrices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huckaby, D. A. ; Chan, T. F.</creator><creatorcontrib>Huckaby, D. A. ; Chan, T. F.</creatorcontrib><description>The pivoted QLP decomposition, introduced by Stewart, represents the first two steps in an algorithm which approximates the SVD. If A is an m‐by‐n matrix, the matrix A∏0 is first factored as A∏0 = QR, and then the matrix RT∏1 is factored as RT∏1 = PLT, resulting in A = Q∏1LPT∏ 0T, with Q and P orthogonal, L lower‐triangular, and ∏0 and ∏1 permutation matrices. The Q and P matrices provide approximations of the left and right singular subspaces, and the diagonal elements of L are excellent approximations of the singular values of A. Stewart observed that pivoting is not necessary in the second step, allowing one to efficiently truncate the decomposition, computing only the first few columns of R and L and choosing the stopping point dynamically. In this paper, we demonstrate that this truncating actually works by extending our theory for the complete pivoted QLP decomposition (UCLA CAM Report # 02‐29, 2002). In particular, say there is a gap between σk and σk+1, and partition the matrix L into diagonal blocks L11 and L22 and off‐diagonal block L21, where L11 is k‐by‐k. If we compute only the block L11, the convergence of (σj(L11)−1 − σ j−1)/σ j−1 for j = 1,...,k are all quadratic in the gap ratio σk+1/σk. Hence, if the gap ratio is small, as it usually is when A has numerical rank k (independent of m and n), then all of the singular values are likely to be well approximated. This truncated pivoted QLP decomposition can be computed in O(mnk) time, making it ideal for accurate SVD approximations of low‐rank matrices. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.404</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>low-rank ; singular values ; Stewarts's pivoted QLP decomposition</subject><ispartof>Numerical linear algebra with applications, 2005-03, Vol.12 (2-3), p.153-159</ispartof><rights>Copyright © 2004 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2994-c3ce2ae7c0b0ea47cc80d1a860089e0e13e41b224907382be388c09a22193d173</citedby><cites>FETCH-LOGICAL-c2994-c3ce2ae7c0b0ea47cc80d1a860089e0e13e41b224907382be388c09a22193d173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.404$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.404$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huckaby, D. A.</creatorcontrib><creatorcontrib>Chan, T. F.</creatorcontrib><title>Stewart's pivoted QLP decomposition for low-rank matrices</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>The pivoted QLP decomposition, introduced by Stewart, represents the first two steps in an algorithm which approximates the SVD. If A is an m‐by‐n matrix, the matrix A∏0 is first factored as A∏0 = QR, and then the matrix RT∏1 is factored as RT∏1 = PLT, resulting in A = Q∏1LPT∏ 0T, with Q and P orthogonal, L lower‐triangular, and ∏0 and ∏1 permutation matrices. The Q and P matrices provide approximations of the left and right singular subspaces, and the diagonal elements of L are excellent approximations of the singular values of A. Stewart observed that pivoting is not necessary in the second step, allowing one to efficiently truncate the decomposition, computing only the first few columns of R and L and choosing the stopping point dynamically. In this paper, we demonstrate that this truncating actually works by extending our theory for the complete pivoted QLP decomposition (UCLA CAM Report # 02‐29, 2002). In particular, say there is a gap between σk and σk+1, and partition the matrix L into diagonal blocks L11 and L22 and off‐diagonal block L21, where L11 is k‐by‐k. If we compute only the block L11, the convergence of (σj(L11)−1 − σ j−1)/σ j−1 for j = 1,...,k are all quadratic in the gap ratio σk+1/σk. Hence, if the gap ratio is small, as it usually is when A has numerical rank k (independent of m and n), then all of the singular values are likely to be well approximated. This truncated pivoted QLP decomposition can be computed in O(mnk) time, making it ideal for accurate SVD approximations of low‐rank matrices. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><subject>low-rank</subject><subject>singular values</subject><subject>Stewarts's pivoted QLP decomposition</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1z81KAzEUhuEgCtYq3sLsupDUk5-ZTJal2CoMtaJScBPSzCnETpuSDNbevS0j7lyds3j44CXklsGQAfD7bWOHEuQZ6THQmrIcivPTr4DmgueX5CqlTwAoci16RL-2uLexHaRs579Ci3X2Us2zGl3Y7ELyrQ_bbBVi1oQ9jXa7zja2jd5huiYXK9skvPm9ffI-eXgbP9Lqefo0HlXUca0ldcIht6gcLAGtVM6VUDNbFgClRkAmULIl51KDEiVfoihLB9pyzrSomRJ9Muh2XQwpRVyZXfQbGw-GgTkVm2OxORYf5V0n977Bw3_MzKpRp2mnfWrx-0_buDaFEio3i9nUTOb8Y7EouZHiB8pDZNA</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Huckaby, D. A.</creator><creator>Chan, T. F.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200503</creationdate><title>Stewart's pivoted QLP decomposition for low-rank matrices</title><author>Huckaby, D. A. ; Chan, T. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2994-c3ce2ae7c0b0ea47cc80d1a860089e0e13e41b224907382be388c09a22193d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>low-rank</topic><topic>singular values</topic><topic>Stewarts's pivoted QLP decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huckaby, D. A.</creatorcontrib><creatorcontrib>Chan, T. F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huckaby, D. A.</au><au>Chan, T. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stewart's pivoted QLP decomposition for low-rank matrices</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2005-03</date><risdate>2005</risdate><volume>12</volume><issue>2-3</issue><spage>153</spage><epage>159</epage><pages>153-159</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>The pivoted QLP decomposition, introduced by Stewart, represents the first two steps in an algorithm which approximates the SVD. If A is an m‐by‐n matrix, the matrix A∏0 is first factored as A∏0 = QR, and then the matrix RT∏1 is factored as RT∏1 = PLT, resulting in A = Q∏1LPT∏ 0T, with Q and P orthogonal, L lower‐triangular, and ∏0 and ∏1 permutation matrices. The Q and P matrices provide approximations of the left and right singular subspaces, and the diagonal elements of L are excellent approximations of the singular values of A. Stewart observed that pivoting is not necessary in the second step, allowing one to efficiently truncate the decomposition, computing only the first few columns of R and L and choosing the stopping point dynamically. In this paper, we demonstrate that this truncating actually works by extending our theory for the complete pivoted QLP decomposition (UCLA CAM Report # 02‐29, 2002). In particular, say there is a gap between σk and σk+1, and partition the matrix L into diagonal blocks L11 and L22 and off‐diagonal block L21, where L11 is k‐by‐k. If we compute only the block L11, the convergence of (σj(L11)−1 − σ j−1)/σ j−1 for j = 1,...,k are all quadratic in the gap ratio σk+1/σk. Hence, if the gap ratio is small, as it usually is when A has numerical rank k (independent of m and n), then all of the singular values are likely to be well approximated. This truncated pivoted QLP decomposition can be computed in O(mnk) time, making it ideal for accurate SVD approximations of low‐rank matrices. Copyright © 2004 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nla.404</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2005-03, Vol.12 (2-3), p.153-159
issn 1070-5325
1099-1506
language eng
recordid cdi_crossref_primary_10_1002_nla_404
source Wiley Online Library Journals Frontfile Complete
subjects low-rank
singular values
Stewarts's pivoted QLP decomposition
title Stewart's pivoted QLP decomposition for low-rank matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stewart's%20pivoted%20QLP%20decomposition%20for%20low-rank%20matrices&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Huckaby,%20D.%20A.&rft.date=2005-03&rft.volume=12&rft.issue=2-3&rft.spage=153&rft.epage=159&rft.pages=153-159&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.404&rft_dat=%3Cistex_cross%3Eark_67375_WNG_FP2ZWW82_4%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true