Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations

Meshfree discretizations construct approximate solutions to partial differential equation based on particles, not on meshes, so that it is well suited to solve the problems on irregular domains. Since the nodal basis property is not satisfied in meshfree discretizations, it is difficult to handle es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2004-03, Vol.11 (2-3), p.293-308
Hauptverfasser: Leem, K. H., Oliveira, S., Stewart, D. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 2-3
container_start_page 293
container_title Numerical linear algebra with applications
container_volume 11
creator Leem, K. H.
Oliveira, S.
Stewart, D. E.
description Meshfree discretizations construct approximate solutions to partial differential equation based on particles, not on meshes, so that it is well suited to solve the problems on irregular domains. Since the nodal basis property is not satisfied in meshfree discretizations, it is difficult to handle essential boundary conditions. In this paper, we employ the Lagrange multiplier approach to solve this problem, but this will result in an indefinite linear system of a saddle point type. We adapt a variation of the smoothed aggregation AMG method of Vaněk et al. to this saddle point system. We give numerical results showing that this method is practical and competitive with other methods with convergence rates that are ∼c/logN. Copyright © 2004 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.383
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nla_383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NLA383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-8e211473f4f610129dfef4bf3172ff2fe4049c45f2af42cf16d6ef9367c81f3c3</originalsourceid><addsrcrecordid>eNp10EFLwzAUwPEgCs4pfoXcVKQzyUvb9Vi2uQlzelAGXkKW5s1ou46kovPT21Hx5um9w48H70_IOWcDzpi42ZR6AEM4ID3OsiziMUsO93vKohhEfExOQnhjjCVxBj3ymJdru_LaGVp9lI1be1fQy_x-ekWx9jTooigt3dZu09CwC42tAkVfV7Sy4RW9tbRwwXjbuG_duHoTTskR6jLYs9_ZJ8-3k6fRLJo_TO9G-TwyAAKioRWcyxRQYsIZF1mBFuUKgacCUaCVTGZGxig0SmGQJ0ViMYMkNUOOYKBPLrq7xtcheItq612l_U5xpvYhVBtCtSFaed3JT1fa3X9MLeZ5p6NOu_bZrz-t_btKUkhjtVxM1ZiPZy9jNlJL-AFAs24b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Leem, K. H. ; Oliveira, S. ; Stewart, D. E.</creator><creatorcontrib>Leem, K. H. ; Oliveira, S. ; Stewart, D. E.</creatorcontrib><description>Meshfree discretizations construct approximate solutions to partial differential equation based on particles, not on meshes, so that it is well suited to solve the problems on irregular domains. Since the nodal basis property is not satisfied in meshfree discretizations, it is difficult to handle essential boundary conditions. In this paper, we employ the Lagrange multiplier approach to solve this problem, but this will result in an indefinite linear system of a saddle point type. We adapt a variation of the smoothed aggregation AMG method of Vaněk et al. to this saddle point system. We give numerical results showing that this method is practical and competitive with other methods with convergence rates that are ∼c/logN. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.383</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>algebraic multigrid ; Lagrange multiplier method ; meshfree methods</subject><ispartof>Numerical linear algebra with applications, 2004-03, Vol.11 (2-3), p.293-308</ispartof><rights>Copyright © 2004 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-8e211473f4f610129dfef4bf3172ff2fe4049c45f2af42cf16d6ef9367c81f3c3</citedby><cites>FETCH-LOGICAL-c3323-8e211473f4f610129dfef4bf3172ff2fe4049c45f2af42cf16d6ef9367c81f3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Leem, K. H.</creatorcontrib><creatorcontrib>Oliveira, S.</creatorcontrib><creatorcontrib>Stewart, D. E.</creatorcontrib><title>Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>Meshfree discretizations construct approximate solutions to partial differential equation based on particles, not on meshes, so that it is well suited to solve the problems on irregular domains. Since the nodal basis property is not satisfied in meshfree discretizations, it is difficult to handle essential boundary conditions. In this paper, we employ the Lagrange multiplier approach to solve this problem, but this will result in an indefinite linear system of a saddle point type. We adapt a variation of the smoothed aggregation AMG method of Vaněk et al. to this saddle point system. We give numerical results showing that this method is practical and competitive with other methods with convergence rates that are ∼c/logN. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><subject>algebraic multigrid</subject><subject>Lagrange multiplier method</subject><subject>meshfree methods</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUwPEgCs4pfoXcVKQzyUvb9Vi2uQlzelAGXkKW5s1ou46kovPT21Hx5um9w48H70_IOWcDzpi42ZR6AEM4ID3OsiziMUsO93vKohhEfExOQnhjjCVxBj3ymJdru_LaGVp9lI1be1fQy_x-ekWx9jTooigt3dZu09CwC42tAkVfV7Sy4RW9tbRwwXjbuG_duHoTTskR6jLYs9_ZJ8-3k6fRLJo_TO9G-TwyAAKioRWcyxRQYsIZF1mBFuUKgacCUaCVTGZGxig0SmGQJ0ViMYMkNUOOYKBPLrq7xtcheItq612l_U5xpvYhVBtCtSFaed3JT1fa3X9MLeZ5p6NOu_bZrz-t_btKUkhjtVxM1ZiPZy9jNlJL-AFAs24b</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Leem, K. H.</creator><creator>Oliveira, S.</creator><creator>Stewart, D. E.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200403</creationdate><title>Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations</title><author>Leem, K. H. ; Oliveira, S. ; Stewart, D. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-8e211473f4f610129dfef4bf3172ff2fe4049c45f2af42cf16d6ef9367c81f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>algebraic multigrid</topic><topic>Lagrange multiplier method</topic><topic>meshfree methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leem, K. H.</creatorcontrib><creatorcontrib>Oliveira, S.</creatorcontrib><creatorcontrib>Stewart, D. E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leem, K. H.</au><au>Oliveira, S.</au><au>Stewart, D. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2004-03</date><risdate>2004</risdate><volume>11</volume><issue>2-3</issue><spage>293</spage><epage>308</epage><pages>293-308</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Meshfree discretizations construct approximate solutions to partial differential equation based on particles, not on meshes, so that it is well suited to solve the problems on irregular domains. Since the nodal basis property is not satisfied in meshfree discretizations, it is difficult to handle essential boundary conditions. In this paper, we employ the Lagrange multiplier approach to solve this problem, but this will result in an indefinite linear system of a saddle point type. We adapt a variation of the smoothed aggregation AMG method of Vaněk et al. to this saddle point system. We give numerical results showing that this method is practical and competitive with other methods with convergence rates that are ∼c/logN. Copyright © 2004 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nla.383</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2004-03, Vol.11 (2-3), p.293-308
issn 1070-5325
1099-1506
language eng
recordid cdi_crossref_primary_10_1002_nla_383
source Wiley Online Library Journals Frontfile Complete
subjects algebraic multigrid
Lagrange multiplier method
meshfree methods
title Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20multigrid%20(AMG)%20for%20saddle%20point%20systems%20from%20meshfree%20discretizations&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Leem,%20K.%20H.&rft.date=2004-03&rft.volume=11&rft.issue=2-3&rft.spage=293&rft.epage=308&rft.pages=293-308&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.383&rft_dat=%3Cwiley_cross%3ENLA383%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true