Multigrid methods for cell-centered discretizations on triangular meshes
SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured charact...
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2013-08, Vol.20 (4), p.626-644 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 644 |
---|---|
container_issue | 4 |
container_start_page | 626 |
container_title | Numerical linear algebra with applications |
container_volume | 20 |
creator | Salinas, P. Rodrigo, C. Gaspar, F. J. Lisbona, F. J. |
description | SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nla.1864 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nla_1864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_KHXH6JM5_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</originalsourceid><addsrcrecordid>eNp10LFOwzAQgGELgUQpSDxCRhYXO7bjZKwqaCltWUCwWY5zbg1uguxUpUysvCZPQqsiJAamO-k-3fAjdE5JjxKSXtZe92ie8QPUoaQoMBUkO9ztkmDBUnGMTmJ8JoRkomAdNJ6ufOvmwVXJEtpFU8XENiEx4D02ULcQoEoqF02A1r3r1jV1TJo6aYPT9Xzldfj6-FxCXEA8RUdW-whnP7OLHq6v7gcjPLkb3gz6E2wozzmmvBSFyMFWlJapyFNirARjGC8p2V4k1ZLnVguTpZznQMvSWmmkoIwYmXLWRRf7vyY0MQaw6jW4pQ4bRYnaNVDbBmrXYEvxnq6dh82_Ts0m_b_exRbefr0OLyqTTAr1OBuq29HTKBtPheLsG4xLbhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multigrid methods for cell-centered discretizations on triangular meshes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Salinas, P. ; Rodrigo, C. ; Gaspar, F. J. ; Lisbona, F. J.</creator><creatorcontrib>Salinas, P. ; Rodrigo, C. ; Gaspar, F. J. ; Lisbona, F. J.</creatorcontrib><description>SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.1864</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>cell-centered finite difference schemes ; multigrid ; semi-structured grids ; Voronoi meshes</subject><ispartof>Numerical linear algebra with applications, 2013-08, Vol.20 (4), p.626-644</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</citedby><cites>FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.1864$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.1864$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Salinas, P.</creatorcontrib><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F. J.</creatorcontrib><creatorcontrib>Lisbona, F. J.</creatorcontrib><title>Multigrid methods for cell-centered discretizations on triangular meshes</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>cell-centered finite difference schemes</subject><subject>multigrid</subject><subject>semi-structured grids</subject><subject>Voronoi meshes</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQgGELgUQpSDxCRhYXO7bjZKwqaCltWUCwWY5zbg1uguxUpUysvCZPQqsiJAamO-k-3fAjdE5JjxKSXtZe92ie8QPUoaQoMBUkO9ztkmDBUnGMTmJ8JoRkomAdNJ6ufOvmwVXJEtpFU8XENiEx4D02ULcQoEoqF02A1r3r1jV1TJo6aYPT9Xzldfj6-FxCXEA8RUdW-whnP7OLHq6v7gcjPLkb3gz6E2wozzmmvBSFyMFWlJapyFNirARjGC8p2V4k1ZLnVguTpZznQMvSWmmkoIwYmXLWRRf7vyY0MQaw6jW4pQ4bRYnaNVDbBmrXYEvxnq6dh82_Ts0m_b_exRbefr0OLyqTTAr1OBuq29HTKBtPheLsG4xLbhI</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Salinas, P.</creator><creator>Rodrigo, C.</creator><creator>Gaspar, F. J.</creator><creator>Lisbona, F. J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201308</creationdate><title>Multigrid methods for cell-centered discretizations on triangular meshes</title><author>Salinas, P. ; Rodrigo, C. ; Gaspar, F. J. ; Lisbona, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>cell-centered finite difference schemes</topic><topic>multigrid</topic><topic>semi-structured grids</topic><topic>Voronoi meshes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salinas, P.</creatorcontrib><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F. J.</creatorcontrib><creatorcontrib>Lisbona, F. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salinas, P.</au><au>Rodrigo, C.</au><au>Gaspar, F. J.</au><au>Lisbona, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid methods for cell-centered discretizations on triangular meshes</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2013-08</date><risdate>2013</risdate><volume>20</volume><issue>4</issue><spage>626</spage><epage>644</epage><pages>626-644</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nla.1864</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2013-08, Vol.20 (4), p.626-644 |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_crossref_primary_10_1002_nla_1864 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cell-centered finite difference schemes multigrid semi-structured grids Voronoi meshes |
title | Multigrid methods for cell-centered discretizations on triangular meshes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20methods%20for%20cell-centered%20discretizations%20on%20triangular%E2%80%89meshes&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Salinas,%20P.&rft.date=2013-08&rft.volume=20&rft.issue=4&rft.spage=626&rft.epage=644&rft.pages=626-644&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.1864&rft_dat=%3Cistex_cross%3Eark_67375_WNG_KHXH6JM5_4%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |