Multigrid methods for cell-centered discretizations on triangular meshes

SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2013-08, Vol.20 (4), p.626-644
Hauptverfasser: Salinas, P., Rodrigo, C., Gaspar, F. J., Lisbona, F. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue 4
container_start_page 626
container_title Numerical linear algebra with applications
container_volume 20
creator Salinas, P.
Rodrigo, C.
Gaspar, F. J.
Lisbona, F. J.
description SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.1864
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nla_1864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_KHXH6JM5_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</originalsourceid><addsrcrecordid>eNp10LFOwzAQgGELgUQpSDxCRhYXO7bjZKwqaCltWUCwWY5zbg1uguxUpUysvCZPQqsiJAamO-k-3fAjdE5JjxKSXtZe92ie8QPUoaQoMBUkO9ztkmDBUnGMTmJ8JoRkomAdNJ6ufOvmwVXJEtpFU8XENiEx4D02ULcQoEoqF02A1r3r1jV1TJo6aYPT9Xzldfj6-FxCXEA8RUdW-whnP7OLHq6v7gcjPLkb3gz6E2wozzmmvBSFyMFWlJapyFNirARjGC8p2V4k1ZLnVguTpZznQMvSWmmkoIwYmXLWRRf7vyY0MQaw6jW4pQ4bRYnaNVDbBmrXYEvxnq6dh82_Ts0m_b_exRbefr0OLyqTTAr1OBuq29HTKBtPheLsG4xLbhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multigrid methods for cell-centered discretizations on triangular meshes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Salinas, P. ; Rodrigo, C. ; Gaspar, F. J. ; Lisbona, F. J.</creator><creatorcontrib>Salinas, P. ; Rodrigo, C. ; Gaspar, F. J. ; Lisbona, F. J.</creatorcontrib><description>SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.1864</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>cell-centered finite difference schemes ; multigrid ; semi-structured grids ; Voronoi meshes</subject><ispartof>Numerical linear algebra with applications, 2013-08, Vol.20 (4), p.626-644</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</citedby><cites>FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.1864$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.1864$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Salinas, P.</creatorcontrib><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F. J.</creatorcontrib><creatorcontrib>Lisbona, F. J.</creatorcontrib><title>Multigrid methods for cell-centered discretizations on triangular meshes</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>cell-centered finite difference schemes</subject><subject>multigrid</subject><subject>semi-structured grids</subject><subject>Voronoi meshes</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQgGELgUQpSDxCRhYXO7bjZKwqaCltWUCwWY5zbg1uguxUpUysvCZPQqsiJAamO-k-3fAjdE5JjxKSXtZe92ie8QPUoaQoMBUkO9ztkmDBUnGMTmJ8JoRkomAdNJ6ufOvmwVXJEtpFU8XENiEx4D02ULcQoEoqF02A1r3r1jV1TJo6aYPT9Xzldfj6-FxCXEA8RUdW-whnP7OLHq6v7gcjPLkb3gz6E2wozzmmvBSFyMFWlJapyFNirARjGC8p2V4k1ZLnVguTpZznQMvSWmmkoIwYmXLWRRf7vyY0MQaw6jW4pQ4bRYnaNVDbBmrXYEvxnq6dh82_Ts0m_b_exRbefr0OLyqTTAr1OBuq29HTKBtPheLsG4xLbhI</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Salinas, P.</creator><creator>Rodrigo, C.</creator><creator>Gaspar, F. J.</creator><creator>Lisbona, F. J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201308</creationdate><title>Multigrid methods for cell-centered discretizations on triangular meshes</title><author>Salinas, P. ; Rodrigo, C. ; Gaspar, F. J. ; Lisbona, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1484-14b5958efd11b25820cf7ecc34b1059571a748fa5c62448e1bbff7c75130c7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>cell-centered finite difference schemes</topic><topic>multigrid</topic><topic>semi-structured grids</topic><topic>Voronoi meshes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salinas, P.</creatorcontrib><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F. J.</creatorcontrib><creatorcontrib>Lisbona, F. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salinas, P.</au><au>Rodrigo, C.</au><au>Gaspar, F. J.</au><au>Lisbona, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid methods for cell-centered discretizations on triangular meshes</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2013-08</date><risdate>2013</risdate><volume>20</volume><issue>4</issue><spage>626</spage><epage>644</epage><pages>626-644</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>SUMMARYThis paper deals with the design of efficient multigrid methods for cell‐centered finite volume schemes on semi‐structured triangular grids. Appropriate novel smoothers are proposed for this type of discretizations, depending on the geometry of the grid. Because of the semi‐structured character of the mesh, on each structured patch, different smoothers can be considered. In this way, the multigrid method is constructed in a block‐wise form, and its global behavior will rely on the components on each block. Numerical experiments are presented to illustrate the good behavior of the proposed multigrid method. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nla.1864</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2013-08, Vol.20 (4), p.626-644
issn 1070-5325
1099-1506
language eng
recordid cdi_crossref_primary_10_1002_nla_1864
source Wiley Online Library Journals Frontfile Complete
subjects cell-centered finite difference schemes
multigrid
semi-structured grids
Voronoi meshes
title Multigrid methods for cell-centered discretizations on triangular meshes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20methods%20for%20cell-centered%20discretizations%20on%20triangular%E2%80%89meshes&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Salinas,%20P.&rft.date=2013-08&rft.volume=20&rft.issue=4&rft.spage=626&rft.epage=644&rft.pages=626-644&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.1864&rft_dat=%3Cistex_cross%3Eark_67375_WNG_KHXH6JM5_4%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true