Simple heuristics for unit disk graphs
Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring...
Gespeichert in:
Veröffentlicht in: | Networks 1995-03, Vol.25 (2), p.59-68 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 2 |
container_start_page | 59 |
container_title | Networks |
container_volume | 25 |
creator | Marathe, M. V. Breu, H. Hunt III, H. B. Ravi, S. S. Rosenkrantz, D. J. |
description | Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects. |
doi_str_mv | 10.1002/net.3230250205 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_3230250205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NET3230250205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYhePe_BeFuc7nT7cTQEwYRgIhi5NWW3lcoCmxai_HvXrMF48jRzeJ538g4h1xR6FCC729hdDzOELIcM8hPSoaBECoDilHQaQKYILD8nFzG-A1CaU9kht1O_riubLO0--LjzRUzcNiT7jd8lpY-r5C2YehkvyZkzVbRXP7NLXh4Gs_4oHT8NH_v347RgPMtTTstSiFI5J2kB3KEB56x0lhnpWLNJY6lkDIUCzlExscCFkhldUGdVWWKX9NrcImxjDNbpOvi1CQdNQX-31E1L_duyEW5aoTaxMJULZlP4eLSQMSUZbzDVYh--sod_QvVkMPtzIm3d5j_28-iasNJcoMj162So58_T0VTMUU_wC9vPcUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simple heuristics for unit disk graphs</title><source>Wiley Online Library All Journals</source><creator>Marathe, M. V. ; Breu, H. ; Hunt III, H. B. ; Ravi, S. S. ; Rosenkrantz, D. J.</creator><creatorcontrib>Marathe, M. V. ; Breu, H. ; Hunt III, H. B. ; Ravi, S. S. ; Rosenkrantz, D. J.</creatorcontrib><description>Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.3230250205</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Networks, 1995-03, Vol.25 (2), p.59-68</ispartof><rights>Copyright © 1995 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</citedby><cites>FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.3230250205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.3230250205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3449846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marathe, M. V.</creatorcontrib><creatorcontrib>Breu, H.</creatorcontrib><creatorcontrib>Hunt III, H. B.</creatorcontrib><creatorcontrib>Ravi, S. S.</creatorcontrib><creatorcontrib>Rosenkrantz, D. J.</creatorcontrib><title>Simple heuristics for unit disk graphs</title><title>Networks</title><addtitle>Networks</addtitle><description>Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYhePe_BeFuc7nT7cTQEwYRgIhi5NWW3lcoCmxai_HvXrMF48jRzeJ538g4h1xR6FCC729hdDzOELIcM8hPSoaBECoDilHQaQKYILD8nFzG-A1CaU9kht1O_riubLO0--LjzRUzcNiT7jd8lpY-r5C2YehkvyZkzVbRXP7NLXh4Gs_4oHT8NH_v347RgPMtTTstSiFI5J2kB3KEB56x0lhnpWLNJY6lkDIUCzlExscCFkhldUGdVWWKX9NrcImxjDNbpOvi1CQdNQX-31E1L_duyEW5aoTaxMJULZlP4eLSQMSUZbzDVYh--sod_QvVkMPtzIm3d5j_28-iasNJcoMj162So58_T0VTMUU_wC9vPcUo</recordid><startdate>199503</startdate><enddate>199503</enddate><creator>Marathe, M. V.</creator><creator>Breu, H.</creator><creator>Hunt III, H. B.</creator><creator>Ravi, S. S.</creator><creator>Rosenkrantz, D. J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199503</creationdate><title>Simple heuristics for unit disk graphs</title><author>Marathe, M. V. ; Breu, H. ; Hunt III, H. B. ; Ravi, S. S. ; Rosenkrantz, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marathe, M. V.</creatorcontrib><creatorcontrib>Breu, H.</creatorcontrib><creatorcontrib>Hunt III, H. B.</creatorcontrib><creatorcontrib>Ravi, S. S.</creatorcontrib><creatorcontrib>Rosenkrantz, D. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marathe, M. V.</au><au>Breu, H.</au><au>Hunt III, H. B.</au><au>Ravi, S. S.</au><au>Rosenkrantz, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple heuristics for unit disk graphs</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>1995-03</date><risdate>1995</risdate><volume>25</volume><issue>2</issue><spage>59</spage><epage>68</epage><pages>59-68</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.3230250205</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3045 |
ispartof | Networks, 1995-03, Vol.25 (2), p.59-68 |
issn | 0028-3045 1097-0037 |
language | eng |
recordid | cdi_crossref_primary_10_1002_net_3230250205 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Exact sciences and technology Flows in networks. Combinatorial problems Operational research and scientific management Operational research. Management science |
title | Simple heuristics for unit disk graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20heuristics%20for%20unit%20disk%20graphs&rft.jtitle=Networks&rft.au=Marathe,%20M.%20V.&rft.date=1995-03&rft.volume=25&rft.issue=2&rft.spage=59&rft.epage=68&rft.pages=59-68&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.3230250205&rft_dat=%3Cwiley_cross%3ENET3230250205%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |