Simple heuristics for unit disk graphs

Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 1995-03, Vol.25 (2), p.59-68
Hauptverfasser: Marathe, M. V., Breu, H., Hunt III, H. B., Ravi, S. S., Rosenkrantz, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 2
container_start_page 59
container_title Networks
container_volume 25
creator Marathe, M. V.
Breu, H.
Hunt III, H. B.
Ravi, S. S.
Rosenkrantz, D. J.
description Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects.
doi_str_mv 10.1002/net.3230250205
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_3230250205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NET3230250205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYhePe_BeFuc7nT7cTQEwYRgIhi5NWW3lcoCmxai_HvXrMF48jRzeJ538g4h1xR6FCC729hdDzOELIcM8hPSoaBECoDilHQaQKYILD8nFzG-A1CaU9kht1O_riubLO0--LjzRUzcNiT7jd8lpY-r5C2YehkvyZkzVbRXP7NLXh4Gs_4oHT8NH_v347RgPMtTTstSiFI5J2kB3KEB56x0lhnpWLNJY6lkDIUCzlExscCFkhldUGdVWWKX9NrcImxjDNbpOvi1CQdNQX-31E1L_duyEW5aoTaxMJULZlP4eLSQMSUZbzDVYh--sod_QvVkMPtzIm3d5j_28-iasNJcoMj162So58_T0VTMUU_wC9vPcUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simple heuristics for unit disk graphs</title><source>Wiley Online Library All Journals</source><creator>Marathe, M. V. ; Breu, H. ; Hunt III, H. B. ; Ravi, S. S. ; Rosenkrantz, D. J.</creator><creatorcontrib>Marathe, M. V. ; Breu, H. ; Hunt III, H. B. ; Ravi, S. S. ; Rosenkrantz, D. J.</creatorcontrib><description>Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.3230250205</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Networks, 1995-03, Vol.25 (2), p.59-68</ispartof><rights>Copyright © 1995 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</citedby><cites>FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.3230250205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.3230250205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3449846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marathe, M. V.</creatorcontrib><creatorcontrib>Breu, H.</creatorcontrib><creatorcontrib>Hunt III, H. B.</creatorcontrib><creatorcontrib>Ravi, S. S.</creatorcontrib><creatorcontrib>Rosenkrantz, D. J.</creatorcontrib><title>Simple heuristics for unit disk graphs</title><title>Networks</title><addtitle>Networks</addtitle><description>Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYhePe_BeFuc7nT7cTQEwYRgIhi5NWW3lcoCmxai_HvXrMF48jRzeJ538g4h1xR6FCC729hdDzOELIcM8hPSoaBECoDilHQaQKYILD8nFzG-A1CaU9kht1O_riubLO0--LjzRUzcNiT7jd8lpY-r5C2YehkvyZkzVbRXP7NLXh4Gs_4oHT8NH_v347RgPMtTTstSiFI5J2kB3KEB56x0lhnpWLNJY6lkDIUCzlExscCFkhldUGdVWWKX9NrcImxjDNbpOvi1CQdNQX-31E1L_duyEW5aoTaxMJULZlP4eLSQMSUZbzDVYh--sod_QvVkMPtzIm3d5j_28-iasNJcoMj162So58_T0VTMUU_wC9vPcUo</recordid><startdate>199503</startdate><enddate>199503</enddate><creator>Marathe, M. V.</creator><creator>Breu, H.</creator><creator>Hunt III, H. B.</creator><creator>Ravi, S. S.</creator><creator>Rosenkrantz, D. J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199503</creationdate><title>Simple heuristics for unit disk graphs</title><author>Marathe, M. V. ; Breu, H. ; Hunt III, H. B. ; Ravi, S. S. ; Rosenkrantz, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4625-61dd77d9ff81c06f3a0ffe8fe4a8f4fe88ae18443790663947b3b9821b1fe9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marathe, M. V.</creatorcontrib><creatorcontrib>Breu, H.</creatorcontrib><creatorcontrib>Hunt III, H. B.</creatorcontrib><creatorcontrib>Ravi, S. S.</creatorcontrib><creatorcontrib>Rosenkrantz, D. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marathe, M. V.</au><au>Breu, H.</au><au>Hunt III, H. B.</au><au>Ravi, S. S.</au><au>Rosenkrantz, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple heuristics for unit disk graphs</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>1995-03</date><risdate>1995</risdate><volume>25</volume><issue>2</issue><spage>59</spage><epage>68</epage><pages>59-68</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>Unit disk graphs are intersection graphs of circles of unit radius in the plane. We present simple and provably good heuristics for a number of classical NP‐hard optimization problems on unit disk graphs. The problems considered include maximum independent set, minimum vertex cover, minimum coloring, and minimum dominating set. We also present an on‐line coloring heuristic which achieves a competitive ratio of 6 for unit disk graphs. Our heuristics do not need a geometric representation of unit disk graphs. Geometric representations are used only in establishing the performance guarantees of the heuristics. Several of our approximation algorithms can be extended to intersection graphs of circles of arbitrary radii in the plane, intersection graphs of regular polygons, and intersection graphs of higher dimensional regular objects.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.3230250205</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 1995-03, Vol.25 (2), p.59-68
issn 0028-3045
1097-0037
language eng
recordid cdi_crossref_primary_10_1002_net_3230250205
source Wiley Online Library All Journals
subjects Applied sciences
Exact sciences and technology
Flows in networks. Combinatorial problems
Operational research and scientific management
Operational research. Management science
title Simple heuristics for unit disk graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20heuristics%20for%20unit%20disk%20graphs&rft.jtitle=Networks&rft.au=Marathe,%20M.%20V.&rft.date=1995-03&rft.volume=25&rft.issue=2&rft.spage=59&rft.epage=68&rft.pages=59-68&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.3230250205&rft_dat=%3Cwiley_cross%3ENET3230250205%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true