A differential game model of Nash equilibrium on a congested traffic network

This paper considers the problem of the competition among a finite number of players who must transport the fixed volume of traffic on a simple network over a prescribed planning horizon. Each player attempts to minimize his total transportation cost by making simultaneous decisions of departure tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 1993-09, Vol.23 (6), p.557-565
1. Verfasser: Wie, Byung-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 565
container_issue 6
container_start_page 557
container_title Networks
container_volume 23
creator Wie, Byung-Wook
description This paper considers the problem of the competition among a finite number of players who must transport the fixed volume of traffic on a simple network over a prescribed planning horizon. Each player attempts to minimize his total transportation cost by making simultaneous decisions of departure time, route, and flow rate over time. The problem is modeled as a N‐person nonzero‐sum differential game. Two solution concepts are applied: [1] the open‐loop Nash equilibrium solution and [2] the feedback Nash equilibrium solution. Optimality conditions are derived and given an economic interpretation as a dynamic game theoretic generalization of Wardrop's second principle. Future extensions of the model are also discussed. The model promises potential applications to Intelligent Vehicle Highway Systems (IVHS) and air traffic control systems. © 1993 by John Wiley & Sons, Inc.
doi_str_mv 10.1002/net.3230230606
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_3230230606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_5ZBH2W7F_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-317e0cc13ad4b6255fc45984f177e2a9f694d482da3ff21bc32d1f4cb0d2a21f3</originalsourceid><addsrcrecordid>eNqFkMtLAzEYxIMoWKtXzzl43ZrnZvdYSx9CqZdKwUvI5lFj91GTLbX_vSsriifhg7nMb-ZjALjFaIQRIve1bUeUUNRditIzMMAoFwlCVJyDQWfIEooYvwRXMb4hhDHH2QAsx9B452ywdetVCbeqsrBqjC1h4-BKxVdo3w--9EXwhwo2NVRQN_XWxtYa2AblnNewqz42YXcNLpwqo7351iF4nk3Xk0WyfJo_TsbLRFOepgnFwiKtMVWGFSnh3GnG84w5LIQlKndpzgzLiFHUOYILTYnBjukCGaIIdnQIRn2uDk2MwTq5D75S4SQxkl9byO4h-btFB9z1wF5FrUoXVK19_KFYxjElrLPlve3oS3v6J1Supus_FUnP-m6Zjx9WhZ1MBRVcblZzyV8eFmQjZjKjn4hGfoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A differential game model of Nash equilibrium on a congested traffic network</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wie, Byung-Wook</creator><creatorcontrib>Wie, Byung-Wook</creatorcontrib><description>This paper considers the problem of the competition among a finite number of players who must transport the fixed volume of traffic on a simple network over a prescribed planning horizon. Each player attempts to minimize his total transportation cost by making simultaneous decisions of departure time, route, and flow rate over time. The problem is modeled as a N‐person nonzero‐sum differential game. Two solution concepts are applied: [1] the open‐loop Nash equilibrium solution and [2] the feedback Nash equilibrium solution. Optimality conditions are derived and given an economic interpretation as a dynamic game theoretic generalization of Wardrop's second principle. Future extensions of the model are also discussed. The model promises potential applications to Intelligent Vehicle Highway Systems (IVHS) and air traffic control systems. © 1993 by John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.3230230606</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Networks, 1993-09, Vol.23 (6), p.557-565</ispartof><rights>Copyright © 1993 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-317e0cc13ad4b6255fc45984f177e2a9f694d482da3ff21bc32d1f4cb0d2a21f3</citedby><cites>FETCH-LOGICAL-c3566-317e0cc13ad4b6255fc45984f177e2a9f694d482da3ff21bc32d1f4cb0d2a21f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.3230230606$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.3230230606$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4851324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wie, Byung-Wook</creatorcontrib><title>A differential game model of Nash equilibrium on a congested traffic network</title><title>Networks</title><addtitle>Networks</addtitle><description>This paper considers the problem of the competition among a finite number of players who must transport the fixed volume of traffic on a simple network over a prescribed planning horizon. Each player attempts to minimize his total transportation cost by making simultaneous decisions of departure time, route, and flow rate over time. The problem is modeled as a N‐person nonzero‐sum differential game. Two solution concepts are applied: [1] the open‐loop Nash equilibrium solution and [2] the feedback Nash equilibrium solution. Optimality conditions are derived and given an economic interpretation as a dynamic game theoretic generalization of Wardrop's second principle. Future extensions of the model are also discussed. The model promises potential applications to Intelligent Vehicle Highway Systems (IVHS) and air traffic control systems. © 1993 by John Wiley &amp; Sons, Inc.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLAzEYxIMoWKtXzzl43ZrnZvdYSx9CqZdKwUvI5lFj91GTLbX_vSsriifhg7nMb-ZjALjFaIQRIve1bUeUUNRditIzMMAoFwlCVJyDQWfIEooYvwRXMb4hhDHH2QAsx9B452ywdetVCbeqsrBqjC1h4-BKxVdo3w--9EXwhwo2NVRQN_XWxtYa2AblnNewqz42YXcNLpwqo7351iF4nk3Xk0WyfJo_TsbLRFOepgnFwiKtMVWGFSnh3GnG84w5LIQlKndpzgzLiFHUOYILTYnBjukCGaIIdnQIRn2uDk2MwTq5D75S4SQxkl9byO4h-btFB9z1wF5FrUoXVK19_KFYxjElrLPlve3oS3v6J1Supus_FUnP-m6Zjx9WhZ1MBRVcblZzyV8eFmQjZjKjn4hGfoc</recordid><startdate>199309</startdate><enddate>199309</enddate><creator>Wie, Byung-Wook</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199309</creationdate><title>A differential game model of Nash equilibrium on a congested traffic network</title><author>Wie, Byung-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-317e0cc13ad4b6255fc45984f177e2a9f694d482da3ff21bc32d1f4cb0d2a21f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wie, Byung-Wook</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wie, Byung-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A differential game model of Nash equilibrium on a congested traffic network</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>1993-09</date><risdate>1993</risdate><volume>23</volume><issue>6</issue><spage>557</spage><epage>565</epage><pages>557-565</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>This paper considers the problem of the competition among a finite number of players who must transport the fixed volume of traffic on a simple network over a prescribed planning horizon. Each player attempts to minimize his total transportation cost by making simultaneous decisions of departure time, route, and flow rate over time. The problem is modeled as a N‐person nonzero‐sum differential game. Two solution concepts are applied: [1] the open‐loop Nash equilibrium solution and [2] the feedback Nash equilibrium solution. Optimality conditions are derived and given an economic interpretation as a dynamic game theoretic generalization of Wardrop's second principle. Future extensions of the model are also discussed. The model promises potential applications to Intelligent Vehicle Highway Systems (IVHS) and air traffic control systems. © 1993 by John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.3230230606</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 1993-09, Vol.23 (6), p.557-565
issn 0028-3045
1097-0037
language eng
recordid cdi_crossref_primary_10_1002_net_3230230606
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Exact sciences and technology
Flows in networks. Combinatorial problems
Operational research and scientific management
Operational research. Management science
title A differential game model of Nash equilibrium on a congested traffic network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20differential%20game%20model%20of%20Nash%20equilibrium%20on%20a%20congested%20traffic%20network&rft.jtitle=Networks&rft.au=Wie,%20Byung-Wook&rft.date=1993-09&rft.volume=23&rft.issue=6&rft.spage=557&rft.epage=565&rft.pages=557-565&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.3230230606&rft_dat=%3Cistex_cross%3Eark_67375_WNG_5ZBH2W7F_8%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true