Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees

In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2011-10, Vol.58 (3), p.190-200
Hauptverfasser: Alizadeh, Behrooz, Burkard, R.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 3
container_start_page 190
container_title Networks
container_volume 58
creator Alizadeh, Behrooz
Burkard, R.E.
description In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r < n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011
doi_str_mv 10.1002/net.20427
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_20427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_J1X517QL_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFpd-AZsXLiYFpihzCxNo1XT1Jg00YUJYZg7itKhAfzp20sd7c7VPbmc8-VyEDqlZEQJYeMO4oiRgok9NKCkEhkhudhHg_RWZjkp-CE6CuGVEEo5LQfoaepWtelUdN4oi5V9TiK-rAJuncem-wAfAKs6OPsek-ganFYRvjDNNHQRPLZOq2hch9fe1RZSNOnoAcIxOmiVDXDyO4doeXW5nF5n87vZzfRinulcMJFxPhEK6lyRnNe8KRhTrOaKlYSzoqI5A942HJJD8LrUk7ZUFWsLCrTRVfrfEJ33WO1dCB5aufZmpfxGUiK3rcjUivxpJXnPeu9aBa1s61WnTdgFWMGLqqRb5rj3fRoLm_-BcnG5_CNnfcKEVM8uofybnIh0uXxYzOQtfeRU3M-lyL8BMbyAwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</title><source>Wiley-Blackwell Journals</source><creator>Alizadeh, Behrooz ; Burkard, R.E.</creator><creatorcontrib>Alizadeh, Behrooz ; Burkard, R.E.</creatorcontrib><description>In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r &lt; n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.20427</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; combinatorial optimization ; Computer science; control theory; systems ; design of algorithms ; Exact sciences and technology ; Experimental design ; Flows in networks. Combinatorial problems ; inverse optimization ; Logistics ; Mathematics ; network center location ; Operational research and scientific management ; Operational research. Management science ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Theoretical computing</subject><ispartof>Networks, 2011-10, Vol.58 (3), p.190-200</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</citedby><cites>FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.20427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.20427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24549810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alizadeh, Behrooz</creatorcontrib><creatorcontrib>Burkard, R.E.</creatorcontrib><title>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</title><title>Networks</title><addtitle>Networks</addtitle><description>In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r &lt; n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>combinatorial optimization</subject><subject>Computer science; control theory; systems</subject><subject>design of algorithms</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>Flows in networks. Combinatorial problems</subject><subject>inverse optimization</subject><subject>Logistics</subject><subject>Mathematics</subject><subject>network center location</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Theoretical computing</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEUhYnRxFpd-AZsXLiYFpihzCxNo1XT1Jg00YUJYZg7itKhAfzp20sd7c7VPbmc8-VyEDqlZEQJYeMO4oiRgok9NKCkEhkhudhHg_RWZjkp-CE6CuGVEEo5LQfoaepWtelUdN4oi5V9TiK-rAJuncem-wAfAKs6OPsek-ganFYRvjDNNHQRPLZOq2hch9fe1RZSNOnoAcIxOmiVDXDyO4doeXW5nF5n87vZzfRinulcMJFxPhEK6lyRnNe8KRhTrOaKlYSzoqI5A942HJJD8LrUk7ZUFWsLCrTRVfrfEJ33WO1dCB5aufZmpfxGUiK3rcjUivxpJXnPeu9aBa1s61WnTdgFWMGLqqRb5rj3fRoLm_-BcnG5_CNnfcKEVM8uofybnIh0uXxYzOQtfeRU3M-lyL8BMbyAwg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Alizadeh, Behrooz</creator><creator>Burkard, R.E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201110</creationdate><title>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</title><author>Alizadeh, Behrooz ; Burkard, R.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>combinatorial optimization</topic><topic>Computer science; control theory; systems</topic><topic>design of algorithms</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>Flows in networks. Combinatorial problems</topic><topic>inverse optimization</topic><topic>Logistics</topic><topic>Mathematics</topic><topic>network center location</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alizadeh, Behrooz</creatorcontrib><creatorcontrib>Burkard, R.E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alizadeh, Behrooz</au><au>Burkard, R.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>2011-10</date><risdate>2011</risdate><volume>58</volume><issue>3</issue><spage>190</spage><epage>200</epage><pages>190-200</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r &lt; n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.20427</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2011-10, Vol.58 (3), p.190-200
issn 0028-3045
1097-0037
language eng
recordid cdi_crossref_primary_10_1002_net_20427
source Wiley-Blackwell Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
combinatorial optimization
Computer science
control theory
systems
design of algorithms
Exact sciences and technology
Experimental design
Flows in networks. Combinatorial problems
inverse optimization
Logistics
Mathematics
network center location
Operational research and scientific management
Operational research. Management science
Probability and statistics
Sciences and techniques of general use
Statistics
Theoretical computing
title Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20algorithms%20for%20inverse%20absolute%20and%20vertex%201-center%20location%20problems%20on%20trees&rft.jtitle=Networks&rft.au=Alizadeh,%20Behrooz&rft.date=2011-10&rft.volume=58&rft.issue=3&rft.spage=190&rft.epage=200&rft.pages=190-200&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.20427&rft_dat=%3Cistex_cross%3Eark_67375_WNG_J1X517QL_7%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true