Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees
In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the i...
Gespeichert in:
Veröffentlicht in: | Networks 2011-10, Vol.58 (3), p.190-200 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 3 |
container_start_page | 190 |
container_title | Networks |
container_volume | 58 |
creator | Alizadeh, Behrooz Burkard, R.E. |
description | In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r < n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r
v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011 |
doi_str_mv | 10.1002/net.20427 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_20427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_J1X517QL_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFpd-AZsXLiYFpihzCxNo1XT1Jg00YUJYZg7itKhAfzp20sd7c7VPbmc8-VyEDqlZEQJYeMO4oiRgok9NKCkEhkhudhHg_RWZjkp-CE6CuGVEEo5LQfoaepWtelUdN4oi5V9TiK-rAJuncem-wAfAKs6OPsek-ganFYRvjDNNHQRPLZOq2hch9fe1RZSNOnoAcIxOmiVDXDyO4doeXW5nF5n87vZzfRinulcMJFxPhEK6lyRnNe8KRhTrOaKlYSzoqI5A942HJJD8LrUk7ZUFWsLCrTRVfrfEJ33WO1dCB5aufZmpfxGUiK3rcjUivxpJXnPeu9aBa1s61WnTdgFWMGLqqRb5rj3fRoLm_-BcnG5_CNnfcKEVM8uofybnIh0uXxYzOQtfeRU3M-lyL8BMbyAwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</title><source>Wiley-Blackwell Journals</source><creator>Alizadeh, Behrooz ; Burkard, R.E.</creator><creatorcontrib>Alizadeh, Behrooz ; Burkard, R.E.</creatorcontrib><description>In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r < n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r
v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.20427</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; combinatorial optimization ; Computer science; control theory; systems ; design of algorithms ; Exact sciences and technology ; Experimental design ; Flows in networks. Combinatorial problems ; inverse optimization ; Logistics ; Mathematics ; network center location ; Operational research and scientific management ; Operational research. Management science ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Theoretical computing</subject><ispartof>Networks, 2011-10, Vol.58 (3), p.190-200</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</citedby><cites>FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.20427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.20427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24549810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alizadeh, Behrooz</creatorcontrib><creatorcontrib>Burkard, R.E.</creatorcontrib><title>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</title><title>Networks</title><addtitle>Networks</addtitle><description>In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r < n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r
v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>combinatorial optimization</subject><subject>Computer science; control theory; systems</subject><subject>design of algorithms</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>Flows in networks. Combinatorial problems</subject><subject>inverse optimization</subject><subject>Logistics</subject><subject>Mathematics</subject><subject>network center location</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Theoretical computing</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEUhYnRxFpd-AZsXLiYFpihzCxNo1XT1Jg00YUJYZg7itKhAfzp20sd7c7VPbmc8-VyEDqlZEQJYeMO4oiRgok9NKCkEhkhudhHg_RWZjkp-CE6CuGVEEo5LQfoaepWtelUdN4oi5V9TiK-rAJuncem-wAfAKs6OPsek-ganFYRvjDNNHQRPLZOq2hch9fe1RZSNOnoAcIxOmiVDXDyO4doeXW5nF5n87vZzfRinulcMJFxPhEK6lyRnNe8KRhTrOaKlYSzoqI5A942HJJD8LrUk7ZUFWsLCrTRVfrfEJ33WO1dCB5aufZmpfxGUiK3rcjUivxpJXnPeu9aBa1s61WnTdgFWMGLqqRb5rj3fRoLm_-BcnG5_CNnfcKEVM8uofybnIh0uXxYzOQtfeRU3M-lyL8BMbyAwg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Alizadeh, Behrooz</creator><creator>Burkard, R.E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201110</creationdate><title>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</title><author>Alizadeh, Behrooz ; Burkard, R.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-5567aeb3a035b5d422a2b5a2805249132e5fd5eeb375b8c6f8a92f41e1dc9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>combinatorial optimization</topic><topic>Computer science; control theory; systems</topic><topic>design of algorithms</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>Flows in networks. Combinatorial problems</topic><topic>inverse optimization</topic><topic>Logistics</topic><topic>Mathematics</topic><topic>network center location</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alizadeh, Behrooz</creatorcontrib><creatorcontrib>Burkard, R.E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alizadeh, Behrooz</au><au>Burkard, R.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>2011-10</date><risdate>2011</risdate><volume>58</volume><issue>3</issue><spage>190</spage><epage>200</epage><pages>190-200</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>In an inverse network absolute (or vertex) 1 ‐center location problem the parameters of a given network, like edge lengths or vertex weights, have to be modified at minimum total cost such that a prespecified vertex s becomes an absolute (or a vertex) 1 ‐center of the network. In this article, the inverse absolute and vertex 1 ‐center location problems on unweighted trees with n + 1 vertices are considered where the edge lengths can be changed within certain bounds. For solving these problems, a fast method is developed for reducing the height of one tree and increasing the height of a second tree under minimum cost until the heights of both trees become equal. Using this result, a combinatorial O(n2) time algorithm is stated for the inverse absolute 1‐center location problem in which no topology change occurs. If topology changes are allowed, an O(n2r) time algorithm solves the problem where r, r < n, is the compressed depth of the tree network T rooted in s. Finally, the inverse vertex 1 ‐center problem with edge length modifications is solved on T. If all edge lengths remain positive, this problem can be solved within the improved O(n2) time complexity by balancing the height of two trees. In the general case, one gets the improved O(n2r
v) time complexity where the parameter rv is bounded by n. © 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 190–200 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.20427</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3045 |
ispartof | Networks, 2011-10, Vol.58 (3), p.190-200 |
issn | 0028-3045 1097-0037 |
language | eng |
recordid | cdi_crossref_primary_10_1002_net_20427 |
source | Wiley-Blackwell Journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences combinatorial optimization Computer science control theory systems design of algorithms Exact sciences and technology Experimental design Flows in networks. Combinatorial problems inverse optimization Logistics Mathematics network center location Operational research and scientific management Operational research. Management science Probability and statistics Sciences and techniques of general use Statistics Theoretical computing |
title | Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20algorithms%20for%20inverse%20absolute%20and%20vertex%201-center%20location%20problems%20on%20trees&rft.jtitle=Networks&rft.au=Alizadeh,%20Behrooz&rft.date=2011-10&rft.volume=58&rft.issue=3&rft.spage=190&rft.epage=200&rft.pages=190-200&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.20427&rft_dat=%3Cistex_cross%3Eark_67375_WNG_J1X517QL_7%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |