Edge intersection graphs of single bend paths on a grid
We combine the known notion of the edge intersection graphs of paths in a tree with a VLSI grid layout model to introduce the edge intersection graphs of paths on a grid. Let P be a collection of nontrivial simple paths on a grid G. We define the edge intersection graph EPG(P) of P to have vertices...
Gespeichert in:
Veröffentlicht in: | Networks 2009-10, Vol.54 (3), p.130-138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 3 |
container_start_page | 130 |
container_title | Networks |
container_volume | 54 |
creator | Golumbic, Martin Charles Lipshteyn, Marina Stern, Michal |
description | We combine the known notion of the edge intersection graphs of paths in a tree with a VLSI grid layout model to introduce the edge intersection graphs of paths on a grid. Let P be a collection of nontrivial simple paths on a grid G. We define the edge intersection graph EPG(P) of P to have vertices which correspond to the members of P, such that two vertices are adjacent in EPG(P) if the corresponding paths in P share an edge in G. An undirected graph G is called an edge intersection graph of paths on a grid (EPG) if G = EPG(P) for some P and G, and 〈P,G〉 is an EPG representation of G. We prove that every graph is an EPG graph. A turn of a path at a grid point is called a bend. We consider here EPG representations in which every path has at most a single bend, called B1‐EPG representations and the corresponding graphs are called B1‐EPG graphs. We prove that any tree is a B1‐EPG graph. Moreover, we give a structural property that enables one to generate non B1‐EPG graphs. Furthermore, we characterize the representation of cliques and chordless 4‐cycles in B1‐EPG graphs. We also prove that single bend paths on a grid have Strong Helly number 3. © 2009 Wiley Periodicals, Inc. NETWORKS, 2009 |
doi_str_mv | 10.1002/net.20305 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_20305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_G35JWQFW_T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4035-601af202594e33303f692c9bf2967bec909bcc974722366a7239fd3dce3284783</originalsourceid><addsrcrecordid>eNp1j0FLwzAYhoMoOKcH_0EvHjx0-5KvbZqjjK0qYyJMdgxpmsxo7UpS0P17O6u7efrg_Z73gZeQawoTCsCmjekmDBDSEzKiIHgMgPyUjPpfHiMk6Tm5COENgNKU5iPC59XWRK7pjA9Gd27XRFuv2tcQ7WwUXLOtTVSapopa1R3CJlI94KpLcmZVHczV7x2Tl8V8PbuPl0_Fw-xuGesEMI0zoMoyYKlIDCIC2kwwLUrLRMZLowWIUmvBE84YZpniDIWtsNIGWZ7wHMfkdvBqvwvBGytb7z6U30sK8rBY9ovlz-KevRnYVgWtautVo104FhjNBadJ1nPTgft0tdn_L5Sr-frPHA8NFzrzdWwo_y4zjjyVm1UhC0wfN8-LjVzjN6Drcag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Edge intersection graphs of single bend paths on a grid</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Golumbic, Martin Charles ; Lipshteyn, Marina ; Stern, Michal</creator><creatorcontrib>Golumbic, Martin Charles ; Lipshteyn, Marina ; Stern, Michal</creatorcontrib><description>We combine the known notion of the edge intersection graphs of paths in a tree with a VLSI grid layout model to introduce the edge intersection graphs of paths on a grid. Let P be a collection of nontrivial simple paths on a grid G. We define the edge intersection graph EPG(P) of P to have vertices which correspond to the members of P, such that two vertices are adjacent in EPG(P) if the corresponding paths in P share an edge in G. An undirected graph G is called an edge intersection graph of paths on a grid (EPG) if G = EPG(P) for some P and G, and 〈P,G〉 is an EPG representation of G. We prove that every graph is an EPG graph. A turn of a path at a grid point is called a bend. We consider here EPG representations in which every path has at most a single bend, called B1‐EPG representations and the corresponding graphs are called B1‐EPG graphs. We prove that any tree is a B1‐EPG graph. Moreover, we give a structural property that enables one to generate non B1‐EPG graphs. Furthermore, we characterize the representation of cliques and chordless 4‐cycles in B1‐EPG graphs. We also prove that single bend paths on a grid have Strong Helly number 3. © 2009 Wiley Periodicals, Inc. NETWORKS, 2009</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.20305</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; intersection graphs ; path bend ; paths on a grid ; Software</subject><ispartof>Networks, 2009-10, Vol.54 (3), p.130-138</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4035-601af202594e33303f692c9bf2967bec909bcc974722366a7239fd3dce3284783</citedby><cites>FETCH-LOGICAL-c4035-601af202594e33303f692c9bf2967bec909bcc974722366a7239fd3dce3284783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.20305$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.20305$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21897146$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Golumbic, Martin Charles</creatorcontrib><creatorcontrib>Lipshteyn, Marina</creatorcontrib><creatorcontrib>Stern, Michal</creatorcontrib><title>Edge intersection graphs of single bend paths on a grid</title><title>Networks</title><addtitle>Networks</addtitle><description>We combine the known notion of the edge intersection graphs of paths in a tree with a VLSI grid layout model to introduce the edge intersection graphs of paths on a grid. Let P be a collection of nontrivial simple paths on a grid G. We define the edge intersection graph EPG(P) of P to have vertices which correspond to the members of P, such that two vertices are adjacent in EPG(P) if the corresponding paths in P share an edge in G. An undirected graph G is called an edge intersection graph of paths on a grid (EPG) if G = EPG(P) for some P and G, and 〈P,G〉 is an EPG representation of G. We prove that every graph is an EPG graph. A turn of a path at a grid point is called a bend. We consider here EPG representations in which every path has at most a single bend, called B1‐EPG representations and the corresponding graphs are called B1‐EPG graphs. We prove that any tree is a B1‐EPG graph. Moreover, we give a structural property that enables one to generate non B1‐EPG graphs. Furthermore, we characterize the representation of cliques and chordless 4‐cycles in B1‐EPG graphs. We also prove that single bend paths on a grid have Strong Helly number 3. © 2009 Wiley Periodicals, Inc. NETWORKS, 2009</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>intersection graphs</subject><subject>path bend</subject><subject>paths on a grid</subject><subject>Software</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLwzAYhoMoOKcH_0EvHjx0-5KvbZqjjK0qYyJMdgxpmsxo7UpS0P17O6u7efrg_Z73gZeQawoTCsCmjekmDBDSEzKiIHgMgPyUjPpfHiMk6Tm5COENgNKU5iPC59XWRK7pjA9Gd27XRFuv2tcQ7WwUXLOtTVSapopa1R3CJlI94KpLcmZVHczV7x2Tl8V8PbuPl0_Fw-xuGesEMI0zoMoyYKlIDCIC2kwwLUrLRMZLowWIUmvBE84YZpniDIWtsNIGWZ7wHMfkdvBqvwvBGytb7z6U30sK8rBY9ovlz-KevRnYVgWtautVo104FhjNBadJ1nPTgft0tdn_L5Sr-frPHA8NFzrzdWwo_y4zjjyVm1UhC0wfN8-LjVzjN6Drcag</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Golumbic, Martin Charles</creator><creator>Lipshteyn, Marina</creator><creator>Stern, Michal</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200910</creationdate><title>Edge intersection graphs of single bend paths on a grid</title><author>Golumbic, Martin Charles ; Lipshteyn, Marina ; Stern, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4035-601af202594e33303f692c9bf2967bec909bcc974722366a7239fd3dce3284783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>intersection graphs</topic><topic>path bend</topic><topic>paths on a grid</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golumbic, Martin Charles</creatorcontrib><creatorcontrib>Lipshteyn, Marina</creatorcontrib><creatorcontrib>Stern, Michal</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golumbic, Martin Charles</au><au>Lipshteyn, Marina</au><au>Stern, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge intersection graphs of single bend paths on a grid</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>2009-10</date><risdate>2009</risdate><volume>54</volume><issue>3</issue><spage>130</spage><epage>138</epage><pages>130-138</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>We combine the known notion of the edge intersection graphs of paths in a tree with a VLSI grid layout model to introduce the edge intersection graphs of paths on a grid. Let P be a collection of nontrivial simple paths on a grid G. We define the edge intersection graph EPG(P) of P to have vertices which correspond to the members of P, such that two vertices are adjacent in EPG(P) if the corresponding paths in P share an edge in G. An undirected graph G is called an edge intersection graph of paths on a grid (EPG) if G = EPG(P) for some P and G, and 〈P,G〉 is an EPG representation of G. We prove that every graph is an EPG graph. A turn of a path at a grid point is called a bend. We consider here EPG representations in which every path has at most a single bend, called B1‐EPG representations and the corresponding graphs are called B1‐EPG graphs. We prove that any tree is a B1‐EPG graph. Moreover, we give a structural property that enables one to generate non B1‐EPG graphs. Furthermore, we characterize the representation of cliques and chordless 4‐cycles in B1‐EPG graphs. We also prove that single bend paths on a grid have Strong Helly number 3. © 2009 Wiley Periodicals, Inc. NETWORKS, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.20305</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3045 |
ispartof | Networks, 2009-10, Vol.54 (3), p.130-138 |
issn | 0028-3045 1097-0037 |
language | eng |
recordid | cdi_crossref_primary_10_1002_net_20305 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology intersection graphs path bend paths on a grid Software |
title | Edge intersection graphs of single bend paths on a grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20intersection%20graphs%20of%20single%20bend%20paths%20on%20a%20grid&rft.jtitle=Networks&rft.au=Golumbic,%20Martin%20Charles&rft.date=2009-10&rft.volume=54&rft.issue=3&rft.spage=130&rft.epage=138&rft.pages=130-138&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.20305&rft_dat=%3Cistex_cross%3Eark_67375_WNG_G35JWQFW_T%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |