The number of spanning trees in a class of double fixed-step loop networks
In this article, we develop a method to count the number of spanning trees in certain classes of double fixed‐step loop networks with nonconstant steps. More specifically our technique finds the number of spanning trees in $ \overrightarrow{C} _{n}^{p,q} $, the double fixed‐step loop network with n...
Gespeichert in:
Veröffentlicht in: | Networks 2008-09, Vol.52 (2), p.69-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we develop a method to count the number of spanning trees in certain classes of double fixed‐step loop networks with nonconstant steps. More specifically our technique finds the number of spanning trees in $ \overrightarrow{C} _{n}^{p,q} $, the double fixed‐step loop network with n vertices and jumps of size p and q, when n = d1m, and q = d2m + p where d1, d2, and p are arbitrary parameters and m is a variable. © 2008 Wiley Periodicals, Inc. NETWORKS, 2008 |
---|---|
ISSN: | 0028-3045 1097-0037 |
DOI: | 10.1002/net.20223 |