The number of spanning trees in a class of double fixed-step loop networks

In this article, we develop a method to count the number of spanning trees in certain classes of double fixed‐step loop networks with nonconstant steps. More specifically our technique finds the number of spanning trees in $ \overrightarrow{C} _{n}^{p,q} $, the double fixed‐step loop network with n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2008-09, Vol.52 (2), p.69-77
Hauptverfasser: Yong, Xuerong, Zhang, Yuanping, Golin, Mordecai J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we develop a method to count the number of spanning trees in certain classes of double fixed‐step loop networks with nonconstant steps. More specifically our technique finds the number of spanning trees in $ \overrightarrow{C} _{n}^{p,q} $, the double fixed‐step loop network with n vertices and jumps of size p and q, when n = d1m, and q = d2m + p where d1, d2, and p are arbitrary parameters and m is a variable. © 2008 Wiley Periodicals, Inc. NETWORKS, 2008
ISSN:0028-3045
1097-0037
DOI:10.1002/net.20223