The simplex algorithm for multicommodity networks

We consider multicommodity network flow problems, where external flow is allowed to vary and where flows of individual commodities may be constrained. For this problem, we describe the simplex algorithm. The simplex algorithm is based upon the inverse of the basis matrix. We discuss an approach wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2002-01, Vol.39 (1), p.15-28
Hauptverfasser: Detlefsen, Nina K., Wallace, Stein W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 15
container_title Networks
container_volume 39
creator Detlefsen, Nina K.
Wallace, Stein W.
description We consider multicommodity network flow problems, where external flow is allowed to vary and where flows of individual commodities may be constrained. For this problem, we describe the simplex algorithm. The simplex algorithm is based upon the inverse of the basis matrix. We discuss an approach where we only have to invert a working matrix with dimension at most equal to the number of arcs in the network. The dimension is independent of the number of commodities. The reduced cost of a nonbasic variable is found only using the working matrix that is explicitly inverted and some simple network operations. We also discuss how to pivot in the working matrix. The focus is on the detailed interpretation of the network structures arising in terms of cycles for the individual commodities. © 2002 John Wiley & Sons, Inc.
doi_str_mv 10.1002/net.10006
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_10006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NET10006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3356-48bdeadb7e0b86fa2aa2c1b7df93815ed88a928e5825b97b1fa3571cb0a7e00b3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQhi0EEqUw8A-yMDCEnuM6dkZU9QNRlaWI0TonNjVNmsoOavvvmxI-JqY76Z7n1b2E3FJ4oADJYGOa0wLpGelRyEQMwMQ56bU3GTMY8ktyFcIHAKWcyh6hy5WJgqu2pdlHWL7X3jWrKrK1j6rPsnF5XVV14ZpD1Cbvar8O1-TCYhnMzffsk9fJeDmaxfOX6dPocR7njPE0HkpdGCy0MKBlajFBTHKqRWEzJik3hZSYJdJwmXCdCU0tMi5orgFbBTTrk_suN_d1CN5YtfWuQn9QFNSpq2o_Ul9dW_auY7cYciytx03uwp_AhiAzSVtu0HE7V5rD_4FqMV7-JMed4UJj9r8G-rVKBRNcvS2majZNnlO5mKgZOwKSp3JJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The simplex algorithm for multicommodity networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Detlefsen, Nina K. ; Wallace, Stein W.</creator><creatorcontrib>Detlefsen, Nina K. ; Wallace, Stein W.</creatorcontrib><description>We consider multicommodity network flow problems, where external flow is allowed to vary and where flows of individual commodities may be constrained. For this problem, we describe the simplex algorithm. The simplex algorithm is based upon the inverse of the basis matrix. We discuss an approach where we only have to invert a working matrix with dimension at most equal to the number of arcs in the network. The dimension is independent of the number of commodities. The reduced cost of a nonbasic variable is found only using the working matrix that is explicitly inverted and some simple network operations. We also discuss how to pivot in the working matrix. The focus is on the detailed interpretation of the network structures arising in terms of cycles for the individual commodities. © 2002 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.10006</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Algebra ; Applied sciences ; basis characterization ; basis interpretation ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Linear and multilinear algebra, matrix theory ; Mathematics ; multicommodity ; Operational research and scientific management ; Operational research. Management science ; Sciences and techniques of general use ; simplex algorithm ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn</subject><ispartof>Networks, 2002-01, Vol.39 (1), p.15-28</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3356-48bdeadb7e0b86fa2aa2c1b7df93815ed88a928e5825b97b1fa3571cb0a7e00b3</citedby><cites>FETCH-LOGICAL-c3356-48bdeadb7e0b86fa2aa2c1b7df93815ed88a928e5825b97b1fa3571cb0a7e00b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.10006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.10006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,4012,27906,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13408981$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Detlefsen, Nina K.</creatorcontrib><creatorcontrib>Wallace, Stein W.</creatorcontrib><title>The simplex algorithm for multicommodity networks</title><title>Networks</title><addtitle>Networks</addtitle><description>We consider multicommodity network flow problems, where external flow is allowed to vary and where flows of individual commodities may be constrained. For this problem, we describe the simplex algorithm. The simplex algorithm is based upon the inverse of the basis matrix. We discuss an approach where we only have to invert a working matrix with dimension at most equal to the number of arcs in the network. The dimension is independent of the number of commodities. The reduced cost of a nonbasic variable is found only using the working matrix that is explicitly inverted and some simple network operations. We also discuss how to pivot in the working matrix. The focus is on the detailed interpretation of the network structures arising in terms of cycles for the individual commodities. © 2002 John Wiley &amp; Sons, Inc.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>basis characterization</subject><subject>basis interpretation</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematics</subject><subject>multicommodity</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Sciences and techniques of general use</subject><subject>simplex algorithm</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQhi0EEqUw8A-yMDCEnuM6dkZU9QNRlaWI0TonNjVNmsoOavvvmxI-JqY76Z7n1b2E3FJ4oADJYGOa0wLpGelRyEQMwMQ56bU3GTMY8ktyFcIHAKWcyh6hy5WJgqu2pdlHWL7X3jWrKrK1j6rPsnF5XVV14ZpD1Cbvar8O1-TCYhnMzffsk9fJeDmaxfOX6dPocR7njPE0HkpdGCy0MKBlajFBTHKqRWEzJik3hZSYJdJwmXCdCU0tMi5orgFbBTTrk_suN_d1CN5YtfWuQn9QFNSpq2o_Ul9dW_auY7cYciytx03uwp_AhiAzSVtu0HE7V5rD_4FqMV7-JMed4UJj9r8G-rVKBRNcvS2majZNnlO5mKgZOwKSp3JJ</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Detlefsen, Nina K.</creator><creator>Wallace, Stein W.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200201</creationdate><title>The simplex algorithm for multicommodity networks</title><author>Detlefsen, Nina K. ; Wallace, Stein W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3356-48bdeadb7e0b86fa2aa2c1b7df93815ed88a928e5825b97b1fa3571cb0a7e00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>basis characterization</topic><topic>basis interpretation</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematics</topic><topic>multicommodity</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Sciences and techniques of general use</topic><topic>simplex algorithm</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detlefsen, Nina K.</creatorcontrib><creatorcontrib>Wallace, Stein W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detlefsen, Nina K.</au><au>Wallace, Stein W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The simplex algorithm for multicommodity networks</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>2002-01</date><risdate>2002</risdate><volume>39</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>We consider multicommodity network flow problems, where external flow is allowed to vary and where flows of individual commodities may be constrained. For this problem, we describe the simplex algorithm. The simplex algorithm is based upon the inverse of the basis matrix. We discuss an approach where we only have to invert a working matrix with dimension at most equal to the number of arcs in the network. The dimension is independent of the number of commodities. The reduced cost of a nonbasic variable is found only using the working matrix that is explicitly inverted and some simple network operations. We also discuss how to pivot in the working matrix. The focus is on the detailed interpretation of the network structures arising in terms of cycles for the individual commodities. © 2002 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/net.10006</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2002-01, Vol.39 (1), p.15-28
issn 0028-3045
1097-0037
language eng
recordid cdi_crossref_primary_10_1002_net_10006
source Wiley Online Library Journals Frontfile Complete
subjects Algebra
Applied sciences
basis characterization
basis interpretation
Exact sciences and technology
Flows in networks. Combinatorial problems
Linear and multilinear algebra, matrix theory
Mathematics
multicommodity
Operational research and scientific management
Operational research. Management science
Sciences and techniques of general use
simplex algorithm
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
title The simplex algorithm for multicommodity networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20simplex%20algorithm%20for%20multicommodity%20networks&rft.jtitle=Networks&rft.au=Detlefsen,%20Nina%20K.&rft.date=2002-01&rft.volume=39&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.10006&rft_dat=%3Cwiley_cross%3ENET10006%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true