Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission
NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Nav...
Gespeichert in:
Veröffentlicht in: | Navigation (Washington) 2017, Vol.64 (2), p.289-300 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 2 |
container_start_page | 289 |
container_title | Navigation (Washington) |
container_volume | 64 |
creator | Winternitz, Luke B Bamford, William A Price, Samuel R Carpenter, J Russell Long, Anne C Farahmand, Mitra |
description | NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching. |
doi_str_mv | 10.1002/navi.198 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_navi_198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NAVI198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3058-ba78587d91bceff17404174d9760392296f0e6762f31f776b8d192b9da4043fe3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmMg8QAccoMDHXbaJs2xQjAmbQNpwDVK22QEunZqytDenkzlysWW7M-_5I-QS4QJArC7Ru_cBGV2REYMOUYJk_yYjMIqizBl7JScef8JEGMi-Ijoad0WuqYvrXe9axvXrOlq73uzocuQtNaHIc2Ldmeo4LcAQL821LYdXear_NrThV43pm_99sN0rqSL77p3vtS1oQvnfTg-JydW195c_PUxeXt8eL1_iubP09l9Po_KGNIsKrTI0kxUEovSWIsigSSUSgoOsWThCwuGC85sjFYIXmQVSlbISgcwtiYek5sht-xa7ztj1bZzG93tFYI6qFEHNSqoCWg0oD-uNvt_ObXM32cDfzXwjfZaNX3nFQPkAIhSpPEvVGps2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</title><source>Wiley Journals</source><source>NASA Technical Reports Server</source><creator>Winternitz, Luke B ; Bamford, William A ; Price, Samuel R ; Carpenter, J Russell ; Long, Anne C ; Farahmand, Mitra</creator><creatorcontrib>Winternitz, Luke B ; Bamford, William A ; Price, Samuel R ; Carpenter, J Russell ; Long, Anne C ; Farahmand, Mitra</creatorcontrib><description>NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.</description><identifier>ISSN: 0028-1522</identifier><identifier>EISSN: 2161-4296</identifier><identifier>DOI: 10.1002/navi.198</identifier><language>eng</language><publisher>Goddard Space Flight Center: Wiley</publisher><subject>Spacecraft Instrumentation And Astrionics</subject><ispartof>Navigation (Washington), 2017, Vol.64 (2), p.289-300</ispartof><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><rights>Copyright © 2017 Institute of Navigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3058-ba78587d91bceff17404174d9760392296f0e6762f31f776b8d192b9da4043fe3</citedby><cites>FETCH-LOGICAL-c3058-ba78587d91bceff17404174d9760392296f0e6762f31f776b8d192b9da4043fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnavi.198$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnavi.198$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,800,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Winternitz, Luke B</creatorcontrib><creatorcontrib>Bamford, William A</creatorcontrib><creatorcontrib>Price, Samuel R</creatorcontrib><creatorcontrib>Carpenter, J Russell</creatorcontrib><creatorcontrib>Long, Anne C</creatorcontrib><creatorcontrib>Farahmand, Mitra</creatorcontrib><title>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</title><title>Navigation (Washington)</title><description>NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.</description><subject>Spacecraft Instrumentation And Astrionics</subject><issn>0028-1522</issn><issn>2161-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp1kMFOwzAMhiMEEmMg8QAccoMDHXbaJs2xQjAmbQNpwDVK22QEunZqytDenkzlysWW7M-_5I-QS4QJArC7Ru_cBGV2REYMOUYJk_yYjMIqizBl7JScef8JEGMi-Ijoad0WuqYvrXe9axvXrOlq73uzocuQtNaHIc2Ldmeo4LcAQL821LYdXear_NrThV43pm_99sN0rqSL77p3vtS1oQvnfTg-JydW195c_PUxeXt8eL1_iubP09l9Po_KGNIsKrTI0kxUEovSWIsigSSUSgoOsWThCwuGC85sjFYIXmQVSlbISgcwtiYek5sht-xa7ztj1bZzG93tFYI6qFEHNSqoCWg0oD-uNvt_ObXM32cDfzXwjfZaNX3nFQPkAIhSpPEvVGps2w</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Winternitz, Luke B</creator><creator>Bamford, William A</creator><creator>Price, Samuel R</creator><creator>Carpenter, J Russell</creator><creator>Long, Anne C</creator><creator>Farahmand, Mitra</creator><general>Wiley</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</title><author>Winternitz, Luke B ; Bamford, William A ; Price, Samuel R ; Carpenter, J Russell ; Long, Anne C ; Farahmand, Mitra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3058-ba78587d91bceff17404174d9760392296f0e6762f31f776b8d192b9da4043fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Spacecraft Instrumentation And Astrionics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winternitz, Luke B</creatorcontrib><creatorcontrib>Bamford, William A</creatorcontrib><creatorcontrib>Price, Samuel R</creatorcontrib><creatorcontrib>Carpenter, J Russell</creatorcontrib><creatorcontrib>Long, Anne C</creatorcontrib><creatorcontrib>Farahmand, Mitra</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><jtitle>Navigation (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winternitz, Luke B</au><au>Bamford, William A</au><au>Price, Samuel R</au><au>Carpenter, J Russell</au><au>Long, Anne C</au><au>Farahmand, Mitra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</atitle><jtitle>Navigation (Washington)</jtitle><date>2017</date><risdate>2017</risdate><volume>64</volume><issue>2</issue><spage>289</spage><epage>300</epage><pages>289-300</pages><issn>0028-1522</issn><eissn>2161-4296</eissn><abstract>NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.</abstract><cop>Goddard Space Flight Center</cop><pub>Wiley</pub><doi>10.1002/navi.198</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-1522 |
ispartof | Navigation (Washington), 2017, Vol.64 (2), p.289-300 |
issn | 0028-1522 2161-4296 |
language | eng |
recordid | cdi_crossref_primary_10_1002_navi_198 |
source | Wiley Journals; NASA Technical Reports Server |
subjects | Spacecraft Instrumentation And Astrionics |
title | Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Positioning%20System%20Navigation%20Above%2076,000%20km%20for%20NASA's%20Magnetospheric%20Multiscale%20Mission&rft.jtitle=Navigation%20(Washington)&rft.au=Winternitz,%20Luke%20B&rft.date=2017&rft.volume=64&rft.issue=2&rft.spage=289&rft.epage=300&rft.pages=289-300&rft.issn=0028-1522&rft.eissn=2161-4296&rft_id=info:doi/10.1002/navi.198&rft_dat=%3Cwiley_cross%3ENAVI198%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |