Solving a (0, 1) hyperbolic program by branch and bound

A problem in (0, 1) hyperbolic programming is formulated and solved by the use of branch and bound methods. Computational results are presented including a comparison among several branching rules. Heuristic methods for quickly finding relatively good feasible solutions are presented and tested. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naval research logistics quarterly 1975-09, Vol.22 (3), p.497-515
1. Verfasser: Saipe, Alan L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 3
container_start_page 497
container_title Naval research logistics quarterly
container_volume 22
creator Saipe, Alan L.
description A problem in (0, 1) hyperbolic programming is formulated and solved by the use of branch and bound methods. Computational results are presented including a comparison among several branching rules. Heuristic methods for quickly finding relatively good feasible solutions are presented and tested. The problem finds application in the scheduling of common carriers. In the solution of the main problem, a subproblem is identified and solved. A geometric analogue is presented, which allows an interesting interpretation of the subproblem. The subproblem itself finds application in the design of gambles.
doi_str_mv 10.1002/nav.3800220308
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nav_3800220308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_G3RRV2ZH_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3258-e07bf5e01694cfbdc021648aa12678b89ccd128fe0b5149e2b5ad154289616813</originalsourceid><addsrcrecordid>eNqFj01LAzEQhoMoWKtXzzkquDWTr02OpWgrlApVK3gJSTbbrm53S1ar--9dqSievMw7DPO88CB0CmQAhNDLym4HTHUbJYyoPdQDzSDR3dxHve6sEuAcDtFR0zwTIriQsofSu7rcFtUSW3xGLjCc41W7CdHVZeHxJtbLaNfYtdhFW_kVtlWGXf1WZcfoILdlE06-s48erq_uR5Nkeju-GQ2niWdUqCSQ1OUiEJCa-9xlnlCQXFkLVKbKKe19BlTlgTgBXAfqhM1AcKq0BKmA9dFg1-tj3TQx5GYTi7WNrQFivrRNp21-tTtA74D3ogztP99mNlz8YZMdWzSv4eOHtfHFyJSlwjzOxmbM5vMFfZoYyj4B5LhoSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving a (0, 1) hyperbolic program by branch and bound</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Saipe, Alan L.</creator><creatorcontrib>Saipe, Alan L.</creatorcontrib><description>A problem in (0, 1) hyperbolic programming is formulated and solved by the use of branch and bound methods. Computational results are presented including a comparison among several branching rules. Heuristic methods for quickly finding relatively good feasible solutions are presented and tested. The problem finds application in the scheduling of common carriers. In the solution of the main problem, a subproblem is identified and solved. A geometric analogue is presented, which allows an interesting interpretation of the subproblem. The subproblem itself finds application in the design of gambles.</description><identifier>ISSN: 0028-1441</identifier><identifier>EISSN: 1931-9193</identifier><identifier>DOI: 10.1002/nav.3800220308</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>Naval research logistics quarterly, 1975-09, Vol.22 (3), p.497-515</ispartof><rights>Copyright © 1975 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3258-e07bf5e01694cfbdc021648aa12678b89ccd128fe0b5149e2b5ad154289616813</citedby><cites>FETCH-LOGICAL-c3258-e07bf5e01694cfbdc021648aa12678b89ccd128fe0b5149e2b5ad154289616813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnav.3800220308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnav.3800220308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Saipe, Alan L.</creatorcontrib><title>Solving a (0, 1) hyperbolic program by branch and bound</title><title>Naval research logistics quarterly</title><addtitle>Naval Research Logistics</addtitle><description>A problem in (0, 1) hyperbolic programming is formulated and solved by the use of branch and bound methods. Computational results are presented including a comparison among several branching rules. Heuristic methods for quickly finding relatively good feasible solutions are presented and tested. The problem finds application in the scheduling of common carriers. In the solution of the main problem, a subproblem is identified and solved. A geometric analogue is presented, which allows an interesting interpretation of the subproblem. The subproblem itself finds application in the design of gambles.</description><issn>0028-1441</issn><issn>1931-9193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEQhoMoWKtXzzkquDWTr02OpWgrlApVK3gJSTbbrm53S1ar--9dqSievMw7DPO88CB0CmQAhNDLym4HTHUbJYyoPdQDzSDR3dxHve6sEuAcDtFR0zwTIriQsofSu7rcFtUSW3xGLjCc41W7CdHVZeHxJtbLaNfYtdhFW_kVtlWGXf1WZcfoILdlE06-s48erq_uR5Nkeju-GQ2niWdUqCSQ1OUiEJCa-9xlnlCQXFkLVKbKKe19BlTlgTgBXAfqhM1AcKq0BKmA9dFg1-tj3TQx5GYTi7WNrQFivrRNp21-tTtA74D3ogztP99mNlz8YZMdWzSv4eOHtfHFyJSlwjzOxmbM5vMFfZoYyj4B5LhoSA</recordid><startdate>197509</startdate><enddate>197509</enddate><creator>Saipe, Alan L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197509</creationdate><title>Solving a (0, 1) hyperbolic program by branch and bound</title><author>Saipe, Alan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3258-e07bf5e01694cfbdc021648aa12678b89ccd128fe0b5149e2b5ad154289616813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saipe, Alan L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Naval research logistics quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saipe, Alan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving a (0, 1) hyperbolic program by branch and bound</atitle><jtitle>Naval research logistics quarterly</jtitle><addtitle>Naval Research Logistics</addtitle><date>1975-09</date><risdate>1975</risdate><volume>22</volume><issue>3</issue><spage>497</spage><epage>515</epage><pages>497-515</pages><issn>0028-1441</issn><eissn>1931-9193</eissn><abstract>A problem in (0, 1) hyperbolic programming is formulated and solved by the use of branch and bound methods. Computational results are presented including a comparison among several branching rules. Heuristic methods for quickly finding relatively good feasible solutions are presented and tested. The problem finds application in the scheduling of common carriers. In the solution of the main problem, a subproblem is identified and solved. A geometric analogue is presented, which allows an interesting interpretation of the subproblem. The subproblem itself finds application in the design of gambles.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/nav.3800220308</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-1441
ispartof Naval research logistics quarterly, 1975-09, Vol.22 (3), p.497-515
issn 0028-1441
1931-9193
language eng
recordid cdi_crossref_primary_10_1002_nav_3800220308
source Wiley Online Library Journals Frontfile Complete
title Solving a (0, 1) hyperbolic program by branch and bound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20a%20(0,%201)%20hyperbolic%20program%20by%20branch%20and%20bound&rft.jtitle=Naval%20research%20logistics%20quarterly&rft.au=Saipe,%20Alan%20L.&rft.date=1975-09&rft.volume=22&rft.issue=3&rft.spage=497&rft.epage=515&rft.pages=497-515&rft.issn=0028-1441&rft.eissn=1931-9193&rft_id=info:doi/10.1002/nav.3800220308&rft_dat=%3Cistex_cross%3Eark_67375_WNG_G3RRV2ZH_2%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true