Exact solutions for one-dimensional consolidation of single-layer unsaturated soil

SUMMARY Based on the Fredlund consolidation theory of unsaturated soil, exact solutions of the governing equations for one‐dimensional consolidation of single‐layer unsaturated soil are presented, in which the water permeability and air transmission are assumed to be constants. The general solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2012-04, Vol.36 (6), p.708-722
Hauptverfasser: Shan, Zhendong, Ling, Daosheng, Ding, Haojiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 722
container_issue 6
container_start_page 708
container_title International journal for numerical and analytical methods in geomechanics
container_volume 36
creator Shan, Zhendong
Ling, Daosheng
Ding, Haojiang
description SUMMARY Based on the Fredlund consolidation theory of unsaturated soil, exact solutions of the governing equations for one‐dimensional consolidation of single‐layer unsaturated soil are presented, in which the water permeability and air transmission are assumed to be constants. The general solution of two coupled homogeneous governing equations is first obtained. This general solution is expressed in terms of two functions psi1 and ψ2, where ψ1 and ψ2, respectively, satisfy two second‐order partial differential equations, which are in the same form. Using the method of separation of variables, the two partial differential equations are solved and exact solutions for three typical homogeneous boundary conditions are obtained. To obtain exact solutions of nonhomogeneous governing equations with three typical nonhomogeneous boundary conditions, the nonhomogeneous boundary conditions are first transformed into homogeneous boundary conditions. Then according to the method of undetermined coefficients and exact solutions of homogenous governing equations, the series form exact solutions are put forward. The validity of the proposed exact solutions is verified against other analytical solutions in the literature. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nag.1026
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_nag_1026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NAG1026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3566-b0133f176023600a1a5830edc260269cf806599f0d7264e4aeaa0e6514ac01503</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKvgI-xF8BKdbJps99gWW5VaQRTFSxizSYmmuyXZYvv2prT05mmG-T--gZ-QSwY3DCC_rXGellwekQ6DUtKyL_gx6QCXnJYg2Sk5i_EbAERKO-Tlbo26zWLjV61r6pjZJmRNbWjlFqaO6YQ-0ylovKtwi2SNzaKr595QjxsTslUdsV0FbE2VPM6fkxOLPpqL_eySt_Hd6-ieTp8nD6PBlCIXUtIvYJxbVkjIuQRAhqLPwVQ6TxdZatsHKcrSQlXksmd6aBDBSMF6qIEJ4F1yvfPq0MQYjFXL4BYYNoqB2nahUhdq20VCr3boEqNGbwPW2sUDn4siL8r0vkvojvt13mz-9anZYLL37nkXW7M-8Bh-lCx4IdT7bKIex8Ppx1A8qU_-B8AtfCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact solutions for one-dimensional consolidation of single-layer unsaturated soil</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shan, Zhendong ; Ling, Daosheng ; Ding, Haojiang</creator><creatorcontrib>Shan, Zhendong ; Ling, Daosheng ; Ding, Haojiang</creatorcontrib><description>SUMMARY Based on the Fredlund consolidation theory of unsaturated soil, exact solutions of the governing equations for one‐dimensional consolidation of single‐layer unsaturated soil are presented, in which the water permeability and air transmission are assumed to be constants. The general solution of two coupled homogeneous governing equations is first obtained. This general solution is expressed in terms of two functions psi1 and ψ2, where ψ1 and ψ2, respectively, satisfy two second‐order partial differential equations, which are in the same form. Using the method of separation of variables, the two partial differential equations are solved and exact solutions for three typical homogeneous boundary conditions are obtained. To obtain exact solutions of nonhomogeneous governing equations with three typical nonhomogeneous boundary conditions, the nonhomogeneous boundary conditions are first transformed into homogeneous boundary conditions. Then according to the method of undetermined coefficients and exact solutions of homogenous governing equations, the series form exact solutions are put forward. The validity of the proposed exact solutions is verified against other analytical solutions in the literature. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.1026</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; consolidation ; Exact sciences and technology ; exact solution ; general solution ; Geotechnics ; nonhomogeneous boundary condition ; Stabilization. Consolidation ; Structural analysis. Stresses ; unsaturated soil</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2012-04, Vol.36 (6), p.708-722</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3566-b0133f176023600a1a5830edc260269cf806599f0d7264e4aeaa0e6514ac01503</citedby><cites>FETCH-LOGICAL-a3566-b0133f176023600a1a5830edc260269cf806599f0d7264e4aeaa0e6514ac01503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.1026$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.1026$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25727958$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shan, Zhendong</creatorcontrib><creatorcontrib>Ling, Daosheng</creatorcontrib><creatorcontrib>Ding, Haojiang</creatorcontrib><title>Exact solutions for one-dimensional consolidation of single-layer unsaturated soil</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>SUMMARY Based on the Fredlund consolidation theory of unsaturated soil, exact solutions of the governing equations for one‐dimensional consolidation of single‐layer unsaturated soil are presented, in which the water permeability and air transmission are assumed to be constants. The general solution of two coupled homogeneous governing equations is first obtained. This general solution is expressed in terms of two functions psi1 and ψ2, where ψ1 and ψ2, respectively, satisfy two second‐order partial differential equations, which are in the same form. Using the method of separation of variables, the two partial differential equations are solved and exact solutions for three typical homogeneous boundary conditions are obtained. To obtain exact solutions of nonhomogeneous governing equations with three typical nonhomogeneous boundary conditions, the nonhomogeneous boundary conditions are first transformed into homogeneous boundary conditions. Then according to the method of undetermined coefficients and exact solutions of homogenous governing equations, the series form exact solutions are put forward. The validity of the proposed exact solutions is verified against other analytical solutions in the literature. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>consolidation</subject><subject>Exact sciences and technology</subject><subject>exact solution</subject><subject>general solution</subject><subject>Geotechnics</subject><subject>nonhomogeneous boundary condition</subject><subject>Stabilization. Consolidation</subject><subject>Structural analysis. Stresses</subject><subject>unsaturated soil</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKvgI-xF8BKdbJps99gWW5VaQRTFSxizSYmmuyXZYvv2prT05mmG-T--gZ-QSwY3DCC_rXGellwekQ6DUtKyL_gx6QCXnJYg2Sk5i_EbAERKO-Tlbo26zWLjV61r6pjZJmRNbWjlFqaO6YQ-0ylovKtwi2SNzaKr595QjxsTslUdsV0FbE2VPM6fkxOLPpqL_eySt_Hd6-ieTp8nD6PBlCIXUtIvYJxbVkjIuQRAhqLPwVQ6TxdZatsHKcrSQlXksmd6aBDBSMF6qIEJ4F1yvfPq0MQYjFXL4BYYNoqB2nahUhdq20VCr3boEqNGbwPW2sUDn4siL8r0vkvojvt13mz-9anZYLL37nkXW7M-8Bh-lCx4IdT7bKIex8Ppx1A8qU_-B8AtfCc</recordid><startdate>20120425</startdate><enddate>20120425</enddate><creator>Shan, Zhendong</creator><creator>Ling, Daosheng</creator><creator>Ding, Haojiang</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120425</creationdate><title>Exact solutions for one-dimensional consolidation of single-layer unsaturated soil</title><author>Shan, Zhendong ; Ling, Daosheng ; Ding, Haojiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3566-b0133f176023600a1a5830edc260269cf806599f0d7264e4aeaa0e6514ac01503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>consolidation</topic><topic>Exact sciences and technology</topic><topic>exact solution</topic><topic>general solution</topic><topic>Geotechnics</topic><topic>nonhomogeneous boundary condition</topic><topic>Stabilization. Consolidation</topic><topic>Structural analysis. Stresses</topic><topic>unsaturated soil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Zhendong</creatorcontrib><creatorcontrib>Ling, Daosheng</creatorcontrib><creatorcontrib>Ding, Haojiang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Zhendong</au><au>Ling, Daosheng</au><au>Ding, Haojiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions for one-dimensional consolidation of single-layer unsaturated soil</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2012-04-25</date><risdate>2012</risdate><volume>36</volume><issue>6</issue><spage>708</spage><epage>722</epage><pages>708-722</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>SUMMARY Based on the Fredlund consolidation theory of unsaturated soil, exact solutions of the governing equations for one‐dimensional consolidation of single‐layer unsaturated soil are presented, in which the water permeability and air transmission are assumed to be constants. The general solution of two coupled homogeneous governing equations is first obtained. This general solution is expressed in terms of two functions psi1 and ψ2, where ψ1 and ψ2, respectively, satisfy two second‐order partial differential equations, which are in the same form. Using the method of separation of variables, the two partial differential equations are solved and exact solutions for three typical homogeneous boundary conditions are obtained. To obtain exact solutions of nonhomogeneous governing equations with three typical nonhomogeneous boundary conditions, the nonhomogeneous boundary conditions are first transformed into homogeneous boundary conditions. Then according to the method of undetermined coefficients and exact solutions of homogenous governing equations, the series form exact solutions are put forward. The validity of the proposed exact solutions is verified against other analytical solutions in the literature. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nag.1026</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2012-04, Vol.36 (6), p.708-722
issn 0363-9061
1096-9853
language eng
recordid cdi_crossref_primary_10_1002_nag_1026
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
consolidation
Exact sciences and technology
exact solution
general solution
Geotechnics
nonhomogeneous boundary condition
Stabilization. Consolidation
Structural analysis. Stresses
unsaturated soil
title Exact solutions for one-dimensional consolidation of single-layer unsaturated soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20for%20one-dimensional%20consolidation%20of%20single-layer%20unsaturated%20soil&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Shan,%20Zhendong&rft.date=2012-04-25&rft.volume=36&rft.issue=6&rft.spage=708&rft.epage=722&rft.pages=708-722&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.1026&rft_dat=%3Cwiley_cross%3ENAG1026%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true