Quantitative analysis of prostate metabolites using 1 H HR‐MAS spectroscopy
A method was developed to quantify prostate metabolite concentrations using 1 H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T 1 and T 2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisi...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2006-06, Vol.55 (6), p.1257-1264 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1264 |
---|---|
container_issue | 6 |
container_start_page | 1257 |
container_title | Magnetic resonance in medicine |
container_volume | 55 |
creator | Swanson, Mark G. Zektzer, Andrew S. Tabatabai, Z. Laura Simko, Jeffry Jarso, Samson Keshari, Kayvan R. Schmitt, Lars Carroll, Peter R. Shinohara, Katsuto Vigneron, Daniel B. Kurhanewicz, John |
description | A method was developed to quantify prostate metabolite concentrations using
1
H high‐resolution magic angle spinning (HR‐MAS) spectroscopy.
T
1
and
T
2
relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs;
T
1mean
= 100 ± 13,
T
2mean
= 30.8 ± 7.4) and citrate (Cit;
T
1mean
= 237 ± 39,
T
2mean
= 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau;
T
1mean
= 636 ± 78,
T
2mean
= 331 ± 71) and choline (Cho;
T
1mean
= 608 ± 60,
T
2mean
= 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]
mean
= 9.34 ± 6.43, [tCho]
mean
= 13.8 ± 7.4, [Lac]
mean
= 69.8 ± 27.1, [Ala]
mean
= 12.6 ± 6.8) than in healthy glandular ([PC+GPC]
mean
= 3.55 ± 1.53,
P
< 0.01; [tCho]
mean
= 7.06 ± 2.36,
P
< 0.01; [Lac]
mean
= 46.5 ± 17.4,
P
< 0.01; [Ala]
mean
= 8.63 ± 4.91,
P
= 0.051) and healthy stromal tissues ([PC+GPC]
mean
= 4.34 ± 2.46,
P
< 0.01; [tCho]
mean
= 7.04 ± 3.10,
P
< 0.01; [Lac]
mean
= 45.1 ± 18.6,
P
< 0.01; [Ala]
mean
= 6.80 ± 2.95,
P
< 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]
mean
= 43.1 ± 21.2, [PAs]
mean
= 18.5 ± 15.6) than in healthy stromal ([Cit]
mean
= 16.1 ± 5.6,
P
< 0.01; [PAs]
mean
= 3.15 ± 1.81,
P
< 0.01) and prostate cancer tissues ([Cit]
mean
= 19.6 ± 12.7,
P
< 0.01; [PAs]
mean
= 5.28 ± 5.44,
P
< 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.20909 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mrm_20909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mrm_20909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c749-9d3a5cff0b0b2239ec0455dabbaa6d3612d60a70897a2b26c362e78818e3b6e83</originalsourceid><addsrcrecordid>eNotkMtKxDAYhYMoWEcXvkG2Ljr-uTRplsOgjjCDqLMvf9JUIr3RdITufASf0SeZelkdOBy-Ax8h1wyWDIDfNkOz5GDAnJCEZZynPDPylCSgJaSCGXlOLmJ8BwBjtEzI7vmA7RhGHMOHp9hiPcUQaVfRfujiXHva-BFtV4fRR3qIoX2jjG7o5uX782u3eqWx926ct67rp0tyVmEd_dV_Lsj-_m6_3qTbp4fH9WqbOi1NakqBmasqsGA5F8Y7kFlWorWIqhSK8VIBasiNRm65ckJxr_Oc5V5Y5XOxIDd_WDf_xsFXRT-EBoepYFD8aChmDcWvBnEEwRNRnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative analysis of prostate metabolites using 1 H HR‐MAS spectroscopy</title><source>Wiley Journals</source><source>Wiley Free Content</source><creator>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</creator><creatorcontrib>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</creatorcontrib><description><![CDATA[A method was developed to quantify prostate metabolite concentrations using
1
H high‐resolution magic angle spinning (HR‐MAS) spectroscopy.
T
1
and
T
2
relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs;
T
1mean
= 100 ± 13,
T
2mean
= 30.8 ± 7.4) and citrate (Cit;
T
1mean
= 237 ± 39,
T
2mean
= 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau;
T
1mean
= 636 ± 78,
T
2mean
= 331 ± 71) and choline (Cho;
T
1mean
= 608 ± 60,
T
2mean
= 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]
mean
= 9.34 ± 6.43, [tCho]
mean
= 13.8 ± 7.4, [Lac]
mean
= 69.8 ± 27.1, [Ala]
mean
= 12.6 ± 6.8) than in healthy glandular ([PC+GPC]
mean
= 3.55 ± 1.53,
P
< 0.01; [tCho]
mean
= 7.06 ± 2.36,
P
< 0.01; [Lac]
mean
= 46.5 ± 17.4,
P
< 0.01; [Ala]
mean
= 8.63 ± 4.91,
P
= 0.051) and healthy stromal tissues ([PC+GPC]
mean
= 4.34 ± 2.46,
P
< 0.01; [tCho]
mean
= 7.04 ± 3.10,
P
< 0.01; [Lac]
mean
= 45.1 ± 18.6,
P
< 0.01; [Ala]
mean
= 6.80 ± 2.95,
P
< 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]
mean
= 43.1 ± 21.2, [PAs]
mean
= 18.5 ± 15.6) than in healthy stromal ([Cit]
mean
= 16.1 ± 5.6,
P
< 0.01; [PAs]
mean
= 3.15 ± 1.81,
P
< 0.01) and prostate cancer tissues ([Cit]
mean
= 19.6 ± 12.7,
P
< 0.01; [PAs]
mean
= 5.28 ± 5.44,
P
< 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20909</identifier><language>eng</language><ispartof>Magnetic resonance in medicine, 2006-06, Vol.55 (6), p.1257-1264</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c749-9d3a5cff0b0b2239ec0455dabbaa6d3612d60a70897a2b26c362e78818e3b6e83</citedby><cites>FETCH-LOGICAL-c749-9d3a5cff0b0b2239ec0455dabbaa6d3612d60a70897a2b26c362e78818e3b6e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Zektzer, Andrew S.</creatorcontrib><creatorcontrib>Tabatabai, Z. Laura</creatorcontrib><creatorcontrib>Simko, Jeffry</creatorcontrib><creatorcontrib>Jarso, Samson</creatorcontrib><creatorcontrib>Keshari, Kayvan R.</creatorcontrib><creatorcontrib>Schmitt, Lars</creatorcontrib><creatorcontrib>Carroll, Peter R.</creatorcontrib><creatorcontrib>Shinohara, Katsuto</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><title>Quantitative analysis of prostate metabolites using 1 H HR‐MAS spectroscopy</title><title>Magnetic resonance in medicine</title><description><![CDATA[A method was developed to quantify prostate metabolite concentrations using
1
H high‐resolution magic angle spinning (HR‐MAS) spectroscopy.
T
1
and
T
2
relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs;
T
1mean
= 100 ± 13,
T
2mean
= 30.8 ± 7.4) and citrate (Cit;
T
1mean
= 237 ± 39,
T
2mean
= 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau;
T
1mean
= 636 ± 78,
T
2mean
= 331 ± 71) and choline (Cho;
T
1mean
= 608 ± 60,
T
2mean
= 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]
mean
= 9.34 ± 6.43, [tCho]
mean
= 13.8 ± 7.4, [Lac]
mean
= 69.8 ± 27.1, [Ala]
mean
= 12.6 ± 6.8) than in healthy glandular ([PC+GPC]
mean
= 3.55 ± 1.53,
P
< 0.01; [tCho]
mean
= 7.06 ± 2.36,
P
< 0.01; [Lac]
mean
= 46.5 ± 17.4,
P
< 0.01; [Ala]
mean
= 8.63 ± 4.91,
P
= 0.051) and healthy stromal tissues ([PC+GPC]
mean
= 4.34 ± 2.46,
P
< 0.01; [tCho]
mean
= 7.04 ± 3.10,
P
< 0.01; [Lac]
mean
= 45.1 ± 18.6,
P
< 0.01; [Ala]
mean
= 6.80 ± 2.95,
P
< 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]
mean
= 43.1 ± 21.2, [PAs]
mean
= 18.5 ± 15.6) than in healthy stromal ([Cit]
mean
= 16.1 ± 5.6,
P
< 0.01; [PAs]
mean
= 3.15 ± 1.81,
P
< 0.01) and prostate cancer tissues ([Cit]
mean
= 19.6 ± 12.7,
P
< 0.01; [PAs]
mean
= 5.28 ± 5.44,
P
< 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></description><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkMtKxDAYhYMoWEcXvkG2Ljr-uTRplsOgjjCDqLMvf9JUIr3RdITufASf0SeZelkdOBy-Ax8h1wyWDIDfNkOz5GDAnJCEZZynPDPylCSgJaSCGXlOLmJ8BwBjtEzI7vmA7RhGHMOHp9hiPcUQaVfRfujiXHva-BFtV4fRR3qIoX2jjG7o5uX782u3eqWx926ct67rp0tyVmEd_dV_Lsj-_m6_3qTbp4fH9WqbOi1NakqBmasqsGA5F8Y7kFlWorWIqhSK8VIBasiNRm65ckJxr_Oc5V5Y5XOxIDd_WDf_xsFXRT-EBoepYFD8aChmDcWvBnEEwRNRnA</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Swanson, Mark G.</creator><creator>Zektzer, Andrew S.</creator><creator>Tabatabai, Z. Laura</creator><creator>Simko, Jeffry</creator><creator>Jarso, Samson</creator><creator>Keshari, Kayvan R.</creator><creator>Schmitt, Lars</creator><creator>Carroll, Peter R.</creator><creator>Shinohara, Katsuto</creator><creator>Vigneron, Daniel B.</creator><creator>Kurhanewicz, John</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200606</creationdate><title>Quantitative analysis of prostate metabolites using 1 H HR‐MAS spectroscopy</title><author>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c749-9d3a5cff0b0b2239ec0455dabbaa6d3612d60a70897a2b26c362e78818e3b6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Zektzer, Andrew S.</creatorcontrib><creatorcontrib>Tabatabai, Z. Laura</creatorcontrib><creatorcontrib>Simko, Jeffry</creatorcontrib><creatorcontrib>Jarso, Samson</creatorcontrib><creatorcontrib>Keshari, Kayvan R.</creatorcontrib><creatorcontrib>Schmitt, Lars</creatorcontrib><creatorcontrib>Carroll, Peter R.</creatorcontrib><creatorcontrib>Shinohara, Katsuto</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><collection>CrossRef</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swanson, Mark G.</au><au>Zektzer, Andrew S.</au><au>Tabatabai, Z. Laura</au><au>Simko, Jeffry</au><au>Jarso, Samson</au><au>Keshari, Kayvan R.</au><au>Schmitt, Lars</au><au>Carroll, Peter R.</au><au>Shinohara, Katsuto</au><au>Vigneron, Daniel B.</au><au>Kurhanewicz, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of prostate metabolites using 1 H HR‐MAS spectroscopy</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2006-06</date><risdate>2006</risdate><volume>55</volume><issue>6</issue><spage>1257</spage><epage>1264</epage><pages>1257-1264</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract><![CDATA[A method was developed to quantify prostate metabolite concentrations using
1
H high‐resolution magic angle spinning (HR‐MAS) spectroscopy.
T
1
and
T
2
relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs;
T
1mean
= 100 ± 13,
T
2mean
= 30.8 ± 7.4) and citrate (Cit;
T
1mean
= 237 ± 39,
T
2mean
= 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau;
T
1mean
= 636 ± 78,
T
2mean
= 331 ± 71) and choline (Cho;
T
1mean
= 608 ± 60,
T
2mean
= 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]
mean
= 9.34 ± 6.43, [tCho]
mean
= 13.8 ± 7.4, [Lac]
mean
= 69.8 ± 27.1, [Ala]
mean
= 12.6 ± 6.8) than in healthy glandular ([PC+GPC]
mean
= 3.55 ± 1.53,
P
< 0.01; [tCho]
mean
= 7.06 ± 2.36,
P
< 0.01; [Lac]
mean
= 46.5 ± 17.4,
P
< 0.01; [Ala]
mean
= 8.63 ± 4.91,
P
= 0.051) and healthy stromal tissues ([PC+GPC]
mean
= 4.34 ± 2.46,
P
< 0.01; [tCho]
mean
= 7.04 ± 3.10,
P
< 0.01; [Lac]
mean
= 45.1 ± 18.6,
P
< 0.01; [Ala]
mean
= 6.80 ± 2.95,
P
< 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]
mean
= 43.1 ± 21.2, [PAs]
mean
= 18.5 ± 15.6) than in healthy stromal ([Cit]
mean
= 16.1 ± 5.6,
P
< 0.01; [PAs]
mean
= 3.15 ± 1.81,
P
< 0.01) and prostate cancer tissues ([Cit]
mean
= 19.6 ± 12.7,
P
< 0.01; [PAs]
mean
= 5.28 ± 5.44,
P
< 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></abstract><doi>10.1002/mrm.20909</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2006-06, Vol.55 (6), p.1257-1264 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mrm_20909 |
source | Wiley Journals; Wiley Free Content |
title | Quantitative analysis of prostate metabolites using 1 H HR‐MAS spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20prostate%20metabolites%20using%201%20H%20HR%E2%80%90MAS%20spectroscopy&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Swanson,%20Mark%20G.&rft.date=2006-06&rft.volume=55&rft.issue=6&rft.spage=1257&rft.epage=1264&rft.pages=1257-1264&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20909&rft_dat=%3Ccrossref%3E10_1002_mrm_20909%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |