Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes

The cadmíum (II) phosphine complexes (Et 3 P) 2 Cd 2 X 4 , (R 3 P) 2 CdX 2 [R 3 P = Ph 3 ,P, Bu 3 P, Et 3 P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu 3 P) 3 Cd 2 X 4 (X = Cl, Br, I) have been prepared and their solution and solid state structures determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry 1991-10, Vol.29 (13)
Hauptverfasser: Kessler, Janet M., Reeder, Jonathan H., Vac, Rahel, Yeung, Constance, Nelson, John H., Frye, James S., Alcock, Nathaniel W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Magnetic resonance in chemistry
container_volume 29
creator Kessler, Janet M.
Reeder, Jonathan H.
Vac, Rahel
Yeung, Constance
Nelson, John H.
Frye, James S.
Alcock, Nathaniel W.
description The cadmíum (II) phosphine complexes (Et 3 P) 2 Cd 2 X 4 , (R 3 P) 2 CdX 2 [R 3 P = Ph 3 ,P, Bu 3 P, Et 3 P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu 3 P) 3 Cd 2 X 4 (X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph 3 P) 2 CdI 2 (1) and (DBP) 2 CdI 2 (2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2 1 ,/ a with a = 18.312 (9), b = 10.285 (5), c = 19.311 (9) Å, β = 115.53 (4)° and Z = 4. Compound 2 crystallized in space group P2 1 ,/ n with a = 12.698 (3), b = 15.302 (4), c = 17.477 (4) Å, β = 96.66 (2)° and Z = 4. The structures were refined by least‐squares methods with R F = 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C 2 v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS 31 P{ 1 H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS 113 Cd{ 1 H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu 3 P) 3 Cd 2 X 4 complexes are shown by variable temperature 31 P{ 1 H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu 3 P) 2 Cd 2 X 4 and (Bu 3 P) 2 CdX 2 . CP/MAS 31 P{ 1 H} and 113 Cd{ 1 H} NMR spectra suggest that these compounds exist as doubly halide bridged (R 3 P) 2 Cd(μ‐X) 2 CdX 2 (R 3 P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature 31 P{ 1 H} NMR spectra in CDCl 3 /CH 2 Cl 2 (1:1) solutions.
doi_str_mv 10.1002/mrc.1260291318
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mrc_1260291318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mrc_1260291318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRMFavnvdYwdSZbLLZPWqoH1BQpIfewnZ2FyJtU3YT0Iv4E_yN_hJTK_TyDjwzvAMPY5cIEwTIbtaBJphJyDQKVEcsQdBlmhdqccwSKHOdYqHwlJ3F-AYAWpciYZ9Vu96a0MR2w1vPY7tq7M_Xd-xM57jZ2B3pu2bYxi701PXBxd3h-JUL_nLFM17ZxZDXfDztDmiIBc__CsZ3_Z6LA6fh6cq9u3jOTrxZRXfxP0dsfj-dV4_p7PnhqbqdpaRyleaEJXjU6MHktLRKeqeMJCAy0mdSmtILoynzmorSWrJLT6iFNFpJ8lqM2GRfS6GNMThfb0OzNuGjRqh38upBXn2QJ34BIhhedg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</title><source>Wiley Online Library All Journals</source><creator>Kessler, Janet M. ; Reeder, Jonathan H. ; Vac, Rahel ; Yeung, Constance ; Nelson, John H. ; Frye, James S. ; Alcock, Nathaniel W.</creator><creatorcontrib>Kessler, Janet M. ; Reeder, Jonathan H. ; Vac, Rahel ; Yeung, Constance ; Nelson, John H. ; Frye, James S. ; Alcock, Nathaniel W.</creatorcontrib><description>The cadmíum (II) phosphine complexes (Et 3 P) 2 Cd 2 X 4 , (R 3 P) 2 CdX 2 [R 3 P = Ph 3 ,P, Bu 3 P, Et 3 P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu 3 P) 3 Cd 2 X 4 (X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph 3 P) 2 CdI 2 (1) and (DBP) 2 CdI 2 (2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2 1 ,/ a with a = 18.312 (9), b = 10.285 (5), c = 19.311 (9) Å, β = 115.53 (4)° and Z = 4. Compound 2 crystallized in space group P2 1 ,/ n with a = 12.698 (3), b = 15.302 (4), c = 17.477 (4) Å, β = 96.66 (2)° and Z = 4. The structures were refined by least‐squares methods with R F = 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C 2 v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS 31 P{ 1 H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS 113 Cd{ 1 H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu 3 P) 3 Cd 2 X 4 complexes are shown by variable temperature 31 P{ 1 H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu 3 P) 2 Cd 2 X 4 and (Bu 3 P) 2 CdX 2 . CP/MAS 31 P{ 1 H} and 113 Cd{ 1 H} NMR spectra suggest that these compounds exist as doubly halide bridged (R 3 P) 2 Cd(μ‐X) 2 CdX 2 (R 3 P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature 31 P{ 1 H} NMR spectra in CDCl 3 /CH 2 Cl 2 (1:1) solutions.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.1260291318</identifier><language>eng</language><ispartof>Magnetic resonance in chemistry, 1991-10, Vol.29 (13)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</citedby><cites>FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kessler, Janet M.</creatorcontrib><creatorcontrib>Reeder, Jonathan H.</creatorcontrib><creatorcontrib>Vac, Rahel</creatorcontrib><creatorcontrib>Yeung, Constance</creatorcontrib><creatorcontrib>Nelson, John H.</creatorcontrib><creatorcontrib>Frye, James S.</creatorcontrib><creatorcontrib>Alcock, Nathaniel W.</creatorcontrib><title>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</title><title>Magnetic resonance in chemistry</title><description>The cadmíum (II) phosphine complexes (Et 3 P) 2 Cd 2 X 4 , (R 3 P) 2 CdX 2 [R 3 P = Ph 3 ,P, Bu 3 P, Et 3 P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu 3 P) 3 Cd 2 X 4 (X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph 3 P) 2 CdI 2 (1) and (DBP) 2 CdI 2 (2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2 1 ,/ a with a = 18.312 (9), b = 10.285 (5), c = 19.311 (9) Å, β = 115.53 (4)° and Z = 4. Compound 2 crystallized in space group P2 1 ,/ n with a = 12.698 (3), b = 15.302 (4), c = 17.477 (4) Å, β = 96.66 (2)° and Z = 4. The structures were refined by least‐squares methods with R F = 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C 2 v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS 31 P{ 1 H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS 113 Cd{ 1 H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu 3 P) 3 Cd 2 X 4 complexes are shown by variable temperature 31 P{ 1 H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu 3 P) 2 Cd 2 X 4 and (Bu 3 P) 2 CdX 2 . CP/MAS 31 P{ 1 H} and 113 Cd{ 1 H} NMR spectra suggest that these compounds exist as doubly halide bridged (R 3 P) 2 Cd(μ‐X) 2 CdX 2 (R 3 P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature 31 P{ 1 H} NMR spectra in CDCl 3 /CH 2 Cl 2 (1:1) solutions.</description><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRMFavnvdYwdSZbLLZPWqoH1BQpIfewnZ2FyJtU3YT0Iv4E_yN_hJTK_TyDjwzvAMPY5cIEwTIbtaBJphJyDQKVEcsQdBlmhdqccwSKHOdYqHwlJ3F-AYAWpciYZ9Vu96a0MR2w1vPY7tq7M_Xd-xM57jZ2B3pu2bYxi701PXBxd3h-JUL_nLFM17ZxZDXfDztDmiIBc__CsZ3_Z6LA6fh6cq9u3jOTrxZRXfxP0dsfj-dV4_p7PnhqbqdpaRyleaEJXjU6MHktLRKeqeMJCAy0mdSmtILoynzmorSWrJLT6iFNFpJ8lqM2GRfS6GNMThfb0OzNuGjRqh38upBXn2QJ34BIhhedg</recordid><startdate>199110</startdate><enddate>199110</enddate><creator>Kessler, Janet M.</creator><creator>Reeder, Jonathan H.</creator><creator>Vac, Rahel</creator><creator>Yeung, Constance</creator><creator>Nelson, John H.</creator><creator>Frye, James S.</creator><creator>Alcock, Nathaniel W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199110</creationdate><title>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</title><author>Kessler, Janet M. ; Reeder, Jonathan H. ; Vac, Rahel ; Yeung, Constance ; Nelson, John H. ; Frye, James S. ; Alcock, Nathaniel W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Janet M.</creatorcontrib><creatorcontrib>Reeder, Jonathan H.</creatorcontrib><creatorcontrib>Vac, Rahel</creatorcontrib><creatorcontrib>Yeung, Constance</creatorcontrib><creatorcontrib>Nelson, John H.</creatorcontrib><creatorcontrib>Frye, James S.</creatorcontrib><creatorcontrib>Alcock, Nathaniel W.</creatorcontrib><collection>CrossRef</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Janet M.</au><au>Reeder, Jonathan H.</au><au>Vac, Rahel</au><au>Yeung, Constance</au><au>Nelson, John H.</au><au>Frye, James S.</au><au>Alcock, Nathaniel W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</atitle><jtitle>Magnetic resonance in chemistry</jtitle><date>1991-10</date><risdate>1991</risdate><volume>29</volume><issue>13</issue><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>The cadmíum (II) phosphine complexes (Et 3 P) 2 Cd 2 X 4 , (R 3 P) 2 CdX 2 [R 3 P = Ph 3 ,P, Bu 3 P, Et 3 P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu 3 P) 3 Cd 2 X 4 (X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph 3 P) 2 CdI 2 (1) and (DBP) 2 CdI 2 (2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2 1 ,/ a with a = 18.312 (9), b = 10.285 (5), c = 19.311 (9) Å, β = 115.53 (4)° and Z = 4. Compound 2 crystallized in space group P2 1 ,/ n with a = 12.698 (3), b = 15.302 (4), c = 17.477 (4) Å, β = 96.66 (2)° and Z = 4. The structures were refined by least‐squares methods with R F = 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C 2 v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS 31 P{ 1 H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS 113 Cd{ 1 H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu 3 P) 3 Cd 2 X 4 complexes are shown by variable temperature 31 P{ 1 H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu 3 P) 2 Cd 2 X 4 and (Bu 3 P) 2 CdX 2 . CP/MAS 31 P{ 1 H} and 113 Cd{ 1 H} NMR spectra suggest that these compounds exist as doubly halide bridged (R 3 P) 2 Cd(μ‐X) 2 CdX 2 (R 3 P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature 31 P{ 1 H} NMR spectra in CDCl 3 /CH 2 Cl 2 (1:1) solutions.</abstract><doi>10.1002/mrc.1260291318</doi></addata></record>
fulltext fulltext
identifier ISSN: 0749-1581
ispartof Magnetic resonance in chemistry, 1991-10, Vol.29 (13)
issn 0749-1581
1097-458X
language eng
recordid cdi_crossref_primary_10_1002_mrc_1260291318
source Wiley Online Library All Journals
title Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20solid%E2%80%90state%20and%20solution%20structures%20of%20(R%203%20P)%202%20CdX%202%20,%20(Et%203%20P)%202%20Cd%202%20X%204%20and%20(Bu%203%20P)%203%20Cd%202%20X%204%20complexes&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Kessler,%20Janet%20M.&rft.date=1991-10&rft.volume=29&rft.issue=13&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.1260291318&rft_dat=%3Ccrossref%3E10_1002_mrc_1260291318%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true