Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes
The cadmíum (II) phosphine complexes (Et 3 P) 2 Cd 2 X 4 , (R 3 P) 2 CdX 2 [R 3 P = Ph 3 ,P, Bu 3 P, Et 3 P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu 3 P) 3 Cd 2 X 4 (X = Cl, Br, I) have been prepared and their solution and solid state structures determined...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in chemistry 1991-10, Vol.29 (13) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Magnetic resonance in chemistry |
container_volume | 29 |
creator | Kessler, Janet M. Reeder, Jonathan H. Vac, Rahel Yeung, Constance Nelson, John H. Frye, James S. Alcock, Nathaniel W. |
description | The cadmíum (II) phosphine complexes (Et
3
P)
2
Cd
2
X
4
, (R
3
P)
2
CdX
2
[R
3
P = Ph
3
,P, Bu
3
P, Et
3
P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu
3
P)
3
Cd
2
X
4
(X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph
3
P)
2
CdI
2
(1) and (DBP)
2
CdI
2
(2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2
1
,/
a
with
a
= 18.312 (9),
b
= 10.285 (5),
c
= 19.311 (9) Å, β = 115.53 (4)° and
Z
= 4. Compound 2 crystallized in space group P2
1
,/
n
with
a
= 12.698 (3),
b
= 15.302 (4),
c
= 17.477 (4) Å, β = 96.66 (2)° and
Z
= 4. The structures were refined by least‐squares methods with
R
F
= 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C
2
v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS
31
P{
1
H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS
113
Cd{
1
H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu
3
P)
3
Cd
2
X
4
complexes are shown by variable temperature
31
P{
1
H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu
3
P)
2
Cd
2
X
4
and (Bu
3
P)
2
CdX
2
. CP/MAS
31
P{
1
H} and
113
Cd{
1
H} NMR spectra suggest that these compounds exist as doubly halide bridged (R
3
P)
2
Cd(μ‐X)
2
CdX
2
(R
3
P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature
31
P{
1
H} NMR spectra in CDCl
3
/CH
2
Cl
2
(1:1) solutions. |
doi_str_mv | 10.1002/mrc.1260291318 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mrc_1260291318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mrc_1260291318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRMFavnvdYwdSZbLLZPWqoH1BQpIfewnZ2FyJtU3YT0Iv4E_yN_hJTK_TyDjwzvAMPY5cIEwTIbtaBJphJyDQKVEcsQdBlmhdqccwSKHOdYqHwlJ3F-AYAWpciYZ9Vu96a0MR2w1vPY7tq7M_Xd-xM57jZ2B3pu2bYxi701PXBxd3h-JUL_nLFM17ZxZDXfDztDmiIBc__CsZ3_Z6LA6fh6cq9u3jOTrxZRXfxP0dsfj-dV4_p7PnhqbqdpaRyleaEJXjU6MHktLRKeqeMJCAy0mdSmtILoynzmorSWrJLT6iFNFpJ8lqM2GRfS6GNMThfb0OzNuGjRqh38upBXn2QJ34BIhhedg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</title><source>Wiley Online Library All Journals</source><creator>Kessler, Janet M. ; Reeder, Jonathan H. ; Vac, Rahel ; Yeung, Constance ; Nelson, John H. ; Frye, James S. ; Alcock, Nathaniel W.</creator><creatorcontrib>Kessler, Janet M. ; Reeder, Jonathan H. ; Vac, Rahel ; Yeung, Constance ; Nelson, John H. ; Frye, James S. ; Alcock, Nathaniel W.</creatorcontrib><description>The cadmíum (II) phosphine complexes (Et
3
P)
2
Cd
2
X
4
, (R
3
P)
2
CdX
2
[R
3
P = Ph
3
,P, Bu
3
P, Et
3
P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu
3
P)
3
Cd
2
X
4
(X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph
3
P)
2
CdI
2
(1) and (DBP)
2
CdI
2
(2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2
1
,/
a
with
a
= 18.312 (9),
b
= 10.285 (5),
c
= 19.311 (9) Å, β = 115.53 (4)° and
Z
= 4. Compound 2 crystallized in space group P2
1
,/
n
with
a
= 12.698 (3),
b
= 15.302 (4),
c
= 17.477 (4) Å, β = 96.66 (2)° and
Z
= 4. The structures were refined by least‐squares methods with
R
F
= 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C
2
v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS
31
P{
1
H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS
113
Cd{
1
H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu
3
P)
3
Cd
2
X
4
complexes are shown by variable temperature
31
P{
1
H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu
3
P)
2
Cd
2
X
4
and (Bu
3
P)
2
CdX
2
. CP/MAS
31
P{
1
H} and
113
Cd{
1
H} NMR spectra suggest that these compounds exist as doubly halide bridged (R
3
P)
2
Cd(μ‐X)
2
CdX
2
(R
3
P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature
31
P{
1
H} NMR spectra in CDCl
3
/CH
2
Cl
2
(1:1) solutions.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.1260291318</identifier><language>eng</language><ispartof>Magnetic resonance in chemistry, 1991-10, Vol.29 (13)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</citedby><cites>FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kessler, Janet M.</creatorcontrib><creatorcontrib>Reeder, Jonathan H.</creatorcontrib><creatorcontrib>Vac, Rahel</creatorcontrib><creatorcontrib>Yeung, Constance</creatorcontrib><creatorcontrib>Nelson, John H.</creatorcontrib><creatorcontrib>Frye, James S.</creatorcontrib><creatorcontrib>Alcock, Nathaniel W.</creatorcontrib><title>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</title><title>Magnetic resonance in chemistry</title><description>The cadmíum (II) phosphine complexes (Et
3
P)
2
Cd
2
X
4
, (R
3
P)
2
CdX
2
[R
3
P = Ph
3
,P, Bu
3
P, Et
3
P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu
3
P)
3
Cd
2
X
4
(X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph
3
P)
2
CdI
2
(1) and (DBP)
2
CdI
2
(2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2
1
,/
a
with
a
= 18.312 (9),
b
= 10.285 (5),
c
= 19.311 (9) Å, β = 115.53 (4)° and
Z
= 4. Compound 2 crystallized in space group P2
1
,/
n
with
a
= 12.698 (3),
b
= 15.302 (4),
c
= 17.477 (4) Å, β = 96.66 (2)° and
Z
= 4. The structures were refined by least‐squares methods with
R
F
= 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C
2
v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS
31
P{
1
H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS
113
Cd{
1
H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu
3
P)
3
Cd
2
X
4
complexes are shown by variable temperature
31
P{
1
H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu
3
P)
2
Cd
2
X
4
and (Bu
3
P)
2
CdX
2
. CP/MAS
31
P{
1
H} and
113
Cd{
1
H} NMR spectra suggest that these compounds exist as doubly halide bridged (R
3
P)
2
Cd(μ‐X)
2
CdX
2
(R
3
P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature
31
P{
1
H} NMR spectra in CDCl
3
/CH
2
Cl
2
(1:1) solutions.</description><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRMFavnvdYwdSZbLLZPWqoH1BQpIfewnZ2FyJtU3YT0Iv4E_yN_hJTK_TyDjwzvAMPY5cIEwTIbtaBJphJyDQKVEcsQdBlmhdqccwSKHOdYqHwlJ3F-AYAWpciYZ9Vu96a0MR2w1vPY7tq7M_Xd-xM57jZ2B3pu2bYxi701PXBxd3h-JUL_nLFM17ZxZDXfDztDmiIBc__CsZ3_Z6LA6fh6cq9u3jOTrxZRXfxP0dsfj-dV4_p7PnhqbqdpaRyleaEJXjU6MHktLRKeqeMJCAy0mdSmtILoynzmorSWrJLT6iFNFpJ8lqM2GRfS6GNMThfb0OzNuGjRqh38upBXn2QJ34BIhhedg</recordid><startdate>199110</startdate><enddate>199110</enddate><creator>Kessler, Janet M.</creator><creator>Reeder, Jonathan H.</creator><creator>Vac, Rahel</creator><creator>Yeung, Constance</creator><creator>Nelson, John H.</creator><creator>Frye, James S.</creator><creator>Alcock, Nathaniel W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199110</creationdate><title>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</title><author>Kessler, Janet M. ; Reeder, Jonathan H. ; Vac, Rahel ; Yeung, Constance ; Nelson, John H. ; Frye, James S. ; Alcock, Nathaniel W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c848-4c170f191f0a4cbd86fe8a6c0cca6f266a7f3a9c2f9c57ddcdbfc1936a986cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Janet M.</creatorcontrib><creatorcontrib>Reeder, Jonathan H.</creatorcontrib><creatorcontrib>Vac, Rahel</creatorcontrib><creatorcontrib>Yeung, Constance</creatorcontrib><creatorcontrib>Nelson, John H.</creatorcontrib><creatorcontrib>Frye, James S.</creatorcontrib><creatorcontrib>Alcock, Nathaniel W.</creatorcontrib><collection>CrossRef</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Janet M.</au><au>Reeder, Jonathan H.</au><au>Vac, Rahel</au><au>Yeung, Constance</au><au>Nelson, John H.</au><au>Frye, James S.</au><au>Alcock, Nathaniel W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes</atitle><jtitle>Magnetic resonance in chemistry</jtitle><date>1991-10</date><risdate>1991</risdate><volume>29</volume><issue>13</issue><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>The cadmíum (II) phosphine complexes (Et
3
P)
2
Cd
2
X
4
, (R
3
P)
2
CdX
2
[R
3
P = Ph
3
,P, Bu
3
P, Et
3
P, 1‐phenyldibenzophosphole (DBP), and 1‐phenyl‐3,4,‐dimethylphosphole (DMPP)] and (Bu
3
P)
3
Cd
2
X
4
(X = Cl, Br, I) have been prepared and their solution and solid state structures determined by a combination of elemental analyses, conductance, infrared and NMR spectroscopy. The structures of (Ph
3
P)
2
CdI
2
(1) and (DBP)
2
CdI
2
(2) have been determined from three‐dimensional X‐ray data collected by counter methods. Compound 1 crystallized in space group P2
1
,/
a
with
a
= 18.312 (9),
b
= 10.285 (5),
c
= 19.311 (9) Å, β = 115.53 (4)° and
Z
= 4. Compound 2 crystallized in space group P2
1
,/
n
with
a
= 12.698 (3),
b
= 15.302 (4),
c
= 17.477 (4) Å, β = 96.66 (2)° and
Z
= 4. The structures were refined by least‐squares methods with
R
F
= 0.041 and 0.048 for 4157 and 3393 unique reflections with I/σ(I) ⩾ 2.0 for 1 and 2, respectively. Both molecules deviate from ideal C
2
v symmetry and have very slightly different Cd‐I (1; 2.724 (2), 2.731 (2); 2; 2.718 (1), 2.721 (1) Å) and Cd‐P (1, 2.631 (2), 2.653 (2); 2; 2.616 (3), 2.603 (3) Å) bond distances. The Cd‐P bond distance differences are sufficient to give rise to a second order ABX CP/MAS
31
P{
1
H} NMR spectrum for 1 but for 2 the phosphorus nuclei of the two DBP ligands are chemical shift equivalent. The CP/MAS
113
Cd{
1
H} NMR spectra of both compounds 1 and 2 show apparent first order triplets. The (Bu
3
P)
3
Cd
2
X
4
complexes are shown by variable temperature
31
P{
1
H} NMR and conductance measurements to exist in solution as equilibrium mixtures of (Bu
3
P)
2
Cd
2
X
4
and (Bu
3
P)
2
CdX
2
. CP/MAS
31
P{
1
H} and
113
Cd{
1
H} NMR spectra suggest that these compounds exist as doubly halide bridged (R
3
P)
2
Cd(μ‐X)
2
CdX
2
(R
3
P) species containing four‐ and five‐coordinate cadmium in the solid state. Equilibrium and activation thermodynamics for the ligand exchange processes of representative complexes have been determined from variable temperature
31
P{
1
H} NMR spectra in CDCl
3
/CH
2
Cl
2
(1:1) solutions.</abstract><doi>10.1002/mrc.1260291318</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-1581 |
ispartof | Magnetic resonance in chemistry, 1991-10, Vol.29 (13) |
issn | 0749-1581 1097-458X |
language | eng |
recordid | cdi_crossref_primary_10_1002_mrc_1260291318 |
source | Wiley Online Library All Journals |
title | Comparison of solid‐state and solution structures of (R 3 P) 2 CdX 2 , (Et 3 P) 2 Cd 2 X 4 and (Bu 3 P) 3 Cd 2 X 4 complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20solid%E2%80%90state%20and%20solution%20structures%20of%20(R%203%20P)%202%20CdX%202%20,%20(Et%203%20P)%202%20Cd%202%20X%204%20and%20(Bu%203%20P)%203%20Cd%202%20X%204%20complexes&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Kessler,%20Janet%20M.&rft.date=1991-10&rft.volume=29&rft.issue=13&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.1260291318&rft_dat=%3Ccrossref%3E10_1002_mrc_1260291318%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |