Technical and dosimetric realization of in vivo x‐ray microbeam irradiations at the Munich Compact Light Source

Purpose X‐ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer‐sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2020-10, Vol.47 (10), p.5183-5193
Hauptverfasser: Burger, Karin, Urban, Theresa, Dombrowsky, Annique C., Dierolf, Martin, Günther, Benedikt, Bartzsch, Stefan, Achterhold, Klaus, Combs, Stephanie E., Schmid, Thomas E., Wilkens, Jan J., Pfeiffer, Franz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5193
container_issue 10
container_start_page 5183
container_title Medical physics (Lancaster)
container_volume 47
creator Burger, Karin
Urban, Theresa
Dombrowsky, Annique C.
Dierolf, Martin
Günther, Benedikt
Bartzsch, Stefan
Achterhold, Klaus
Combs, Stephanie E.
Schmid, Thomas E.
Wilkens, Jan J.
Pfeiffer, Franz
description Purpose X‐ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer‐sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory‐sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). Methods A specially made beam collimation optic allows to increase x‐ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. Results We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 μm slit size and 350 μm center‐to‐center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak‐to‐valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. Conclusions This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.
doi_str_mv 10.1002/mp.14433
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mp_14433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP14433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2703-f64f5ee744c9d2ebe85dafaf25ae53e8ca4147ae68c6d9202738b4487eccedc43</originalsourceid><addsrcrecordid>eNp10E1OwzAQhmELgWgpSJwAeckmxbGdvyWq-JNagURZRxN7QoziJDhpoaw4AmfkJIQG2LGazaNXo4-QY59Nfcb4mW2mvpRC7JAxl5HwJGfJLhkzlkiPSxaMyEHbPjHGQhGwfTISPAoiHrMxeV6iKiqjoKRQaarr1ljsnFHUIZTmDTpTV7TOqano2qxr-vr5_uFgQ61Rrs4QLDXOgTZb2FLoaFcgXaz6ZkFntW1AdXRuHouO3tcrp_CQ7OVQtnj0cyfk4fJiObv25rdXN7Pzuad4xISXhzIPECMpVaI5ZhgHGnLIeQAYCIwVSF9GgGGsQp1wxiMRZ1LGESqFWkkxIadDt_-zbR3maeOMBbdJfZZ-r5baJt2u1tOTgTarzKL-g78z9cAbwIspcfNvKF3cDcEvn1d46g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Technical and dosimetric realization of in vivo x‐ray microbeam irradiations at the Munich Compact Light Source</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Burger, Karin ; Urban, Theresa ; Dombrowsky, Annique C. ; Dierolf, Martin ; Günther, Benedikt ; Bartzsch, Stefan ; Achterhold, Klaus ; Combs, Stephanie E. ; Schmid, Thomas E. ; Wilkens, Jan J. ; Pfeiffer, Franz</creator><creatorcontrib>Burger, Karin ; Urban, Theresa ; Dombrowsky, Annique C. ; Dierolf, Martin ; Günther, Benedikt ; Bartzsch, Stefan ; Achterhold, Klaus ; Combs, Stephanie E. ; Schmid, Thomas E. ; Wilkens, Jan J. ; Pfeiffer, Franz</creatorcontrib><description>Purpose X‐ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer‐sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory‐sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). Methods A specially made beam collimation optic allows to increase x‐ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. Results We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 μm slit size and 350 μm center‐to‐center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak‐to‐valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. Conclusions This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.14433</identifier><identifier>PMID: 32757280</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; compact synchrotron source ; inverse Compton source ; Mice ; microbeam dosimetry ; microbeam radiation therapy ; Monte Carlo Method ; preclinical study ; Radiometry ; small animal RT ; Synchrotrons ; X-Ray Therapy ; X-Rays</subject><ispartof>Medical physics (Lancaster), 2020-10, Vol.47 (10), p.5183-5193</ispartof><rights>2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2703-f64f5ee744c9d2ebe85dafaf25ae53e8ca4147ae68c6d9202738b4487eccedc43</citedby><cites>FETCH-LOGICAL-c2703-f64f5ee744c9d2ebe85dafaf25ae53e8ca4147ae68c6d9202738b4487eccedc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.14433$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.14433$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32757280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burger, Karin</creatorcontrib><creatorcontrib>Urban, Theresa</creatorcontrib><creatorcontrib>Dombrowsky, Annique C.</creatorcontrib><creatorcontrib>Dierolf, Martin</creatorcontrib><creatorcontrib>Günther, Benedikt</creatorcontrib><creatorcontrib>Bartzsch, Stefan</creatorcontrib><creatorcontrib>Achterhold, Klaus</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><creatorcontrib>Schmid, Thomas E.</creatorcontrib><creatorcontrib>Wilkens, Jan J.</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><title>Technical and dosimetric realization of in vivo x‐ray microbeam irradiations at the Munich Compact Light Source</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose X‐ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer‐sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory‐sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). Methods A specially made beam collimation optic allows to increase x‐ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. Results We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 μm slit size and 350 μm center‐to‐center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak‐to‐valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. Conclusions This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.</description><subject>Animals</subject><subject>compact synchrotron source</subject><subject>inverse Compton source</subject><subject>Mice</subject><subject>microbeam dosimetry</subject><subject>microbeam radiation therapy</subject><subject>Monte Carlo Method</subject><subject>preclinical study</subject><subject>Radiometry</subject><subject>small animal RT</subject><subject>Synchrotrons</subject><subject>X-Ray Therapy</subject><subject>X-Rays</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10E1OwzAQhmELgWgpSJwAeckmxbGdvyWq-JNagURZRxN7QoziJDhpoaw4AmfkJIQG2LGazaNXo4-QY59Nfcb4mW2mvpRC7JAxl5HwJGfJLhkzlkiPSxaMyEHbPjHGQhGwfTISPAoiHrMxeV6iKiqjoKRQaarr1ljsnFHUIZTmDTpTV7TOqano2qxr-vr5_uFgQ61Rrs4QLDXOgTZb2FLoaFcgXaz6ZkFntW1AdXRuHouO3tcrp_CQ7OVQtnj0cyfk4fJiObv25rdXN7Pzuad4xISXhzIPECMpVaI5ZhgHGnLIeQAYCIwVSF9GgGGsQp1wxiMRZ1LGESqFWkkxIadDt_-zbR3maeOMBbdJfZZ-r5baJt2u1tOTgTarzKL-g78z9cAbwIspcfNvKF3cDcEvn1d46g</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Burger, Karin</creator><creator>Urban, Theresa</creator><creator>Dombrowsky, Annique C.</creator><creator>Dierolf, Martin</creator><creator>Günther, Benedikt</creator><creator>Bartzsch, Stefan</creator><creator>Achterhold, Klaus</creator><creator>Combs, Stephanie E.</creator><creator>Schmid, Thomas E.</creator><creator>Wilkens, Jan J.</creator><creator>Pfeiffer, Franz</creator><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202010</creationdate><title>Technical and dosimetric realization of in vivo x‐ray microbeam irradiations at the Munich Compact Light Source</title><author>Burger, Karin ; Urban, Theresa ; Dombrowsky, Annique C. ; Dierolf, Martin ; Günther, Benedikt ; Bartzsch, Stefan ; Achterhold, Klaus ; Combs, Stephanie E. ; Schmid, Thomas E. ; Wilkens, Jan J. ; Pfeiffer, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2703-f64f5ee744c9d2ebe85dafaf25ae53e8ca4147ae68c6d9202738b4487eccedc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>compact synchrotron source</topic><topic>inverse Compton source</topic><topic>Mice</topic><topic>microbeam dosimetry</topic><topic>microbeam radiation therapy</topic><topic>Monte Carlo Method</topic><topic>preclinical study</topic><topic>Radiometry</topic><topic>small animal RT</topic><topic>Synchrotrons</topic><topic>X-Ray Therapy</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burger, Karin</creatorcontrib><creatorcontrib>Urban, Theresa</creatorcontrib><creatorcontrib>Dombrowsky, Annique C.</creatorcontrib><creatorcontrib>Dierolf, Martin</creatorcontrib><creatorcontrib>Günther, Benedikt</creatorcontrib><creatorcontrib>Bartzsch, Stefan</creatorcontrib><creatorcontrib>Achterhold, Klaus</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><creatorcontrib>Schmid, Thomas E.</creatorcontrib><creatorcontrib>Wilkens, Jan J.</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burger, Karin</au><au>Urban, Theresa</au><au>Dombrowsky, Annique C.</au><au>Dierolf, Martin</au><au>Günther, Benedikt</au><au>Bartzsch, Stefan</au><au>Achterhold, Klaus</au><au>Combs, Stephanie E.</au><au>Schmid, Thomas E.</au><au>Wilkens, Jan J.</au><au>Pfeiffer, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technical and dosimetric realization of in vivo x‐ray microbeam irradiations at the Munich Compact Light Source</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2020-10</date><risdate>2020</risdate><volume>47</volume><issue>10</issue><spage>5183</spage><epage>5193</epage><pages>5183-5193</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose X‐ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer‐sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory‐sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). Methods A specially made beam collimation optic allows to increase x‐ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. Results We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 μm slit size and 350 μm center‐to‐center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak‐to‐valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. Conclusions This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.</abstract><cop>United States</cop><pmid>32757280</pmid><doi>10.1002/mp.14433</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2020-10, Vol.47 (10), p.5183-5193
issn 0094-2405
2473-4209
language eng
recordid cdi_crossref_primary_10_1002_mp_14433
source MEDLINE; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Animals
compact synchrotron source
inverse Compton source
Mice
microbeam dosimetry
microbeam radiation therapy
Monte Carlo Method
preclinical study
Radiometry
small animal RT
Synchrotrons
X-Ray Therapy
X-Rays
title Technical and dosimetric realization of in vivo x‐ray microbeam irradiations at the Munich Compact Light Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technical%20and%20dosimetric%20realization%20of%20in%20vivo%20x%E2%80%90ray%20microbeam%20irradiations%20at%20the%20Munich%20Compact%20Light%20Source&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Burger,%20Karin&rft.date=2020-10&rft.volume=47&rft.issue=10&rft.spage=5183&rft.epage=5193&rft.pages=5183-5193&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.14433&rft_dat=%3Cwiley_cross%3EMP14433%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32757280&rfr_iscdi=true