Bistatic phase function and fast solution of scattering by 2D random distributed scatterers

We present large‐scale Monte Carlo simulation results of the phase functions in multiple scattering by dense media of small 2D particles. Solution of the Foldy–Lax equations with large number of unknowns is done efficiently using the sparse‐matrix canonical‐grid (SMCG) method. The SMCG method facili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2003-08, Vol.38 (4), p.313-317
Hauptverfasser: Guo, Jianjun, Tsang, Leung, Chang, A. T. C., Li, Q., Huang, C.-C., Ding, K.-H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 4
container_start_page 313
container_title Microwave and optical technology letters
container_volume 38
creator Guo, Jianjun
Tsang, Leung
Chang, A. T. C.
Li, Q.
Huang, C.-C.
Ding, K.-H.
description We present large‐scale Monte Carlo simulation results of the phase functions in multiple scattering by dense media of small 2D particles. Solution of the Foldy–Lax equations with large number of unknowns is done efficiently using the sparse‐matrix canonical‐grid (SMCG) method. The SMCG method facilitates the use of FFT and results in an N log N‐type efficiency for CPU and O(N) for memory. This dependence is demonstrated by the simulation of CPU time using up to 50000 particles that are randomly distributed through random walk in a large area of 400 square wavelengths. The bistatic phase functions for a random medium are computed. The phase function converges with the number of particles and the number of realizations. The simulation results indicate that the nonsticky particles, sticky particles, and independent scattering have similar angular distribution patterns of the phase functions. However, the dense sticky particles show stronger scattering than the independent scattering, while the dense nonsticky particles have smaller scattering than that of the independent scattering. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 313–317, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11047
doi_str_mv 10.1002/mop.11047
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mop_11047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MOP11047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3057-8bca79e8bf093229ae7fe4fb4844950ac81c9bc1f746776f3b39d831ce8198cf3</originalsourceid><addsrcrecordid>eNp1kE1PAjEURRujiYgu_Afduhjo10zbpaCgCYhBjQsXTafTahVmSFui_HtHEHeuXnJzzk3eBeAcox5GiPSXzaqHMWL8AHQwkiIjvECHoIOEzDPCOD8GJzG-I4Qo56QDXgY-Jp28gas3HS1069ok39RQ1xV0OiYYm8V6mzQORqNTssHXr7DcQHIFQ4s1S1i1JcGX62SrPWNDPAVHTi-iPfu9XfA0un4c3mST2fh2eDnJDEU5z0RpNJdWlA5JSojUljvLXMkEYzJH2ghsZGmw46zgvHC0pLISFBsrsBTG0S642PWa0MQYrFOr4Jc6bBRG6mcV1a6itqu0bH_HfvqF3fwPqunsfm9kO6P90X79GTp8qIJTnqvnu7GSg5zM2XSuHug35Tx0bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bistatic phase function and fast solution of scattering by 2D random distributed scatterers</title><source>Wiley Online Library All Journals</source><creator>Guo, Jianjun ; Tsang, Leung ; Chang, A. T. C. ; Li, Q. ; Huang, C.-C. ; Ding, K.-H.</creator><creatorcontrib>Guo, Jianjun ; Tsang, Leung ; Chang, A. T. C. ; Li, Q. ; Huang, C.-C. ; Ding, K.-H.</creatorcontrib><description>We present large‐scale Monte Carlo simulation results of the phase functions in multiple scattering by dense media of small 2D particles. Solution of the Foldy–Lax equations with large number of unknowns is done efficiently using the sparse‐matrix canonical‐grid (SMCG) method. The SMCG method facilitates the use of FFT and results in an N log N‐type efficiency for CPU and O(N) for memory. This dependence is demonstrated by the simulation of CPU time using up to 50000 particles that are randomly distributed through random walk in a large area of 400 square wavelengths. The bistatic phase functions for a random medium are computed. The phase function converges with the number of particles and the number of realizations. The simulation results indicate that the nonsticky particles, sticky particles, and independent scattering have similar angular distribution patterns of the phase functions. However, the dense sticky particles show stronger scattering than the independent scattering, while the dense nonsticky particles have smaller scattering than that of the independent scattering. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 313–317, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11047</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.11047</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Monte Carlo simulation ; phase function ; sparse-matrix canonical-grid method</subject><ispartof>Microwave and optical technology letters, 2003-08, Vol.38 (4), p.313-317</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3057-8bca79e8bf093229ae7fe4fb4844950ac81c9bc1f746776f3b39d831ce8198cf3</citedby><cites>FETCH-LOGICAL-c3057-8bca79e8bf093229ae7fe4fb4844950ac81c9bc1f746776f3b39d831ce8198cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.11047$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.11047$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Guo, Jianjun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Chang, A. T. C.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>Huang, C.-C.</creatorcontrib><creatorcontrib>Ding, K.-H.</creatorcontrib><title>Bistatic phase function and fast solution of scattering by 2D random distributed scatterers</title><title>Microwave and optical technology letters</title><addtitle>Microw. Opt. Technol. Lett</addtitle><description>We present large‐scale Monte Carlo simulation results of the phase functions in multiple scattering by dense media of small 2D particles. Solution of the Foldy–Lax equations with large number of unknowns is done efficiently using the sparse‐matrix canonical‐grid (SMCG) method. The SMCG method facilitates the use of FFT and results in an N log N‐type efficiency for CPU and O(N) for memory. This dependence is demonstrated by the simulation of CPU time using up to 50000 particles that are randomly distributed through random walk in a large area of 400 square wavelengths. The bistatic phase functions for a random medium are computed. The phase function converges with the number of particles and the number of realizations. The simulation results indicate that the nonsticky particles, sticky particles, and independent scattering have similar angular distribution patterns of the phase functions. However, the dense sticky particles show stronger scattering than the independent scattering, while the dense nonsticky particles have smaller scattering than that of the independent scattering. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 313–317, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11047</description><subject>Monte Carlo simulation</subject><subject>phase function</subject><subject>sparse-matrix canonical-grid method</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEURRujiYgu_Afduhjo10zbpaCgCYhBjQsXTafTahVmSFui_HtHEHeuXnJzzk3eBeAcox5GiPSXzaqHMWL8AHQwkiIjvECHoIOEzDPCOD8GJzG-I4Qo56QDXgY-Jp28gas3HS1069ok39RQ1xV0OiYYm8V6mzQORqNTssHXr7DcQHIFQ4s1S1i1JcGX62SrPWNDPAVHTi-iPfu9XfA0un4c3mST2fh2eDnJDEU5z0RpNJdWlA5JSojUljvLXMkEYzJH2ghsZGmw46zgvHC0pLISFBsrsBTG0S642PWa0MQYrFOr4Jc6bBRG6mcV1a6itqu0bH_HfvqF3fwPqunsfm9kO6P90X79GTp8qIJTnqvnu7GSg5zM2XSuHug35Tx0bg</recordid><startdate>20030820</startdate><enddate>20030820</enddate><creator>Guo, Jianjun</creator><creator>Tsang, Leung</creator><creator>Chang, A. T. C.</creator><creator>Li, Q.</creator><creator>Huang, C.-C.</creator><creator>Ding, K.-H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030820</creationdate><title>Bistatic phase function and fast solution of scattering by 2D random distributed scatterers</title><author>Guo, Jianjun ; Tsang, Leung ; Chang, A. T. C. ; Li, Q. ; Huang, C.-C. ; Ding, K.-H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3057-8bca79e8bf093229ae7fe4fb4844950ac81c9bc1f746776f3b39d831ce8198cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Monte Carlo simulation</topic><topic>phase function</topic><topic>sparse-matrix canonical-grid method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jianjun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Chang, A. T. C.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>Huang, C.-C.</creatorcontrib><creatorcontrib>Ding, K.-H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jianjun</au><au>Tsang, Leung</au><au>Chang, A. T. C.</au><au>Li, Q.</au><au>Huang, C.-C.</au><au>Ding, K.-H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bistatic phase function and fast solution of scattering by 2D random distributed scatterers</atitle><jtitle>Microwave and optical technology letters</jtitle><addtitle>Microw. Opt. Technol. Lett</addtitle><date>2003-08-20</date><risdate>2003</risdate><volume>38</volume><issue>4</issue><spage>313</spage><epage>317</epage><pages>313-317</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>We present large‐scale Monte Carlo simulation results of the phase functions in multiple scattering by dense media of small 2D particles. Solution of the Foldy–Lax equations with large number of unknowns is done efficiently using the sparse‐matrix canonical‐grid (SMCG) method. The SMCG method facilitates the use of FFT and results in an N log N‐type efficiency for CPU and O(N) for memory. This dependence is demonstrated by the simulation of CPU time using up to 50000 particles that are randomly distributed through random walk in a large area of 400 square wavelengths. The bistatic phase functions for a random medium are computed. The phase function converges with the number of particles and the number of realizations. The simulation results indicate that the nonsticky particles, sticky particles, and independent scattering have similar angular distribution patterns of the phase functions. However, the dense sticky particles show stronger scattering than the independent scattering, while the dense nonsticky particles have smaller scattering than that of the independent scattering. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 313–317, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11047</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/mop.11047</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2003-08, Vol.38 (4), p.313-317
issn 0895-2477
1098-2760
language eng
recordid cdi_crossref_primary_10_1002_mop_11047
source Wiley Online Library All Journals
subjects Monte Carlo simulation
phase function
sparse-matrix canonical-grid method
title Bistatic phase function and fast solution of scattering by 2D random distributed scatterers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bistatic%20phase%20function%20and%20fast%20solution%20of%20scattering%20by%202D%20random%20distributed%20scatterers&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Guo,%20Jianjun&rft.date=2003-08-20&rft.volume=38&rft.issue=4&rft.spage=313&rft.epage=317&rft.pages=313-317&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.11047&rft_dat=%3Cwiley_cross%3EMOP11047%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true