Optimization of a PML absorber's conductivity profile using FDTD

The conductivity profile of a perfectly matched layer (PML) absorber is optimized to increase the absorption performance. The key parameters describing a polynomial‐type conductivity profile for an anisotropic PML absorber are optimized by employing a steady‐state genetic algorithm (SSGA). A Gaussia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2003-06, Vol.37 (5), p.380-383
Hauptverfasser: Li, Ching-Lieh, Liu, Chien-Wei, Chen, Shao-Hon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 5
container_start_page 380
container_title Microwave and optical technology letters
container_volume 37
creator Li, Ching-Lieh
Liu, Chien-Wei
Chen, Shao-Hon
description The conductivity profile of a perfectly matched layer (PML) absorber is optimized to increase the absorption performance. The key parameters describing a polynomial‐type conductivity profile for an anisotropic PML absorber are optimized by employing a steady‐state genetic algorithm (SSGA). A Gaussian line source is used for excitation in free space in order to minimize local error. The optimum polynomial parameters are reported for PML absorbers of various layers. Numerical results show that PML absorption can be improved by at least 7–15 dB, independently of the space‐domain and grid sizes. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 37: 380–383, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.10924
doi_str_mv 10.1002/mop.10924
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mop_10924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MOP10924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3054-d5eba950be9012b02aabdbda0fb8b9c738da397f06475249dda19b010d0120a83</originalsourceid><addsrcrecordid>eNp1j7FOwzAURS0EEqUw8AfeEEPos53E8Qa0tCC1tEhFSCyWHTvI0NaRnQLl6wkU2JjuG865ehehYwJnBID2lr5uD0HTHdRps0goz2EXdaAQWUJTzvfRQYzPAMA4px10Pq0bt3QfqnF-hX2FFZ5Nxljp6IO24STi0q_Mumzcq2s2uA6-cguL19GtnvBwMB8cor1KLaI9-skuuh9ezfvXyXg6uulfjJOSQZYmJrNaiQy0FUCoBqqUNtooqHShRclZYRQTvII85RlNhTGKCA0ETIuDKlgXnW57y-BjDLaSdXBLFTaSgPyaLtvp8nt6y_a27Fv76-Z_UE6ms18j2RouNvb9z1DhReac8Uw-3I7k3SO_HJGZkDn7BDmeaZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of a PML absorber's conductivity profile using FDTD</title><source>Access via Wiley Online Library</source><creator>Li, Ching-Lieh ; Liu, Chien-Wei ; Chen, Shao-Hon</creator><creatorcontrib>Li, Ching-Lieh ; Liu, Chien-Wei ; Chen, Shao-Hon</creatorcontrib><description>The conductivity profile of a perfectly matched layer (PML) absorber is optimized to increase the absorption performance. The key parameters describing a polynomial‐type conductivity profile for an anisotropic PML absorber are optimized by employing a steady‐state genetic algorithm (SSGA). A Gaussian line source is used for excitation in free space in order to minimize local error. The optimum polynomial parameters are reported for PML absorbers of various layers. Numerical results show that PML absorption can be improved by at least 7–15 dB, independently of the space‐domain and grid sizes. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 37: 380–383, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.10924</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.10924</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>conductivity profile ; FDTD ; optimization ; PML</subject><ispartof>Microwave and optical technology letters, 2003-06, Vol.37 (5), p.380-383</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3054-d5eba950be9012b02aabdbda0fb8b9c738da397f06475249dda19b010d0120a83</citedby><cites>FETCH-LOGICAL-c3054-d5eba950be9012b02aabdbda0fb8b9c738da397f06475249dda19b010d0120a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.10924$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.10924$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Li, Ching-Lieh</creatorcontrib><creatorcontrib>Liu, Chien-Wei</creatorcontrib><creatorcontrib>Chen, Shao-Hon</creatorcontrib><title>Optimization of a PML absorber's conductivity profile using FDTD</title><title>Microwave and optical technology letters</title><addtitle>Microw. Opt. Technol. Lett</addtitle><description>The conductivity profile of a perfectly matched layer (PML) absorber is optimized to increase the absorption performance. The key parameters describing a polynomial‐type conductivity profile for an anisotropic PML absorber are optimized by employing a steady‐state genetic algorithm (SSGA). A Gaussian line source is used for excitation in free space in order to minimize local error. The optimum polynomial parameters are reported for PML absorbers of various layers. Numerical results show that PML absorption can be improved by at least 7–15 dB, independently of the space‐domain and grid sizes. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 37: 380–383, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.10924</description><subject>conductivity profile</subject><subject>FDTD</subject><subject>optimization</subject><subject>PML</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAURS0EEqUw8AfeEEPos53E8Qa0tCC1tEhFSCyWHTvI0NaRnQLl6wkU2JjuG865ehehYwJnBID2lr5uD0HTHdRps0goz2EXdaAQWUJTzvfRQYzPAMA4px10Pq0bt3QfqnF-hX2FFZ5Nxljp6IO24STi0q_Mumzcq2s2uA6-cguL19GtnvBwMB8cor1KLaI9-skuuh9ezfvXyXg6uulfjJOSQZYmJrNaiQy0FUCoBqqUNtooqHShRclZYRQTvII85RlNhTGKCA0ETIuDKlgXnW57y-BjDLaSdXBLFTaSgPyaLtvp8nt6y_a27Fv76-Z_UE6ms18j2RouNvb9z1DhReac8Uw-3I7k3SO_HJGZkDn7BDmeaZU</recordid><startdate>20030605</startdate><enddate>20030605</enddate><creator>Li, Ching-Lieh</creator><creator>Liu, Chien-Wei</creator><creator>Chen, Shao-Hon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030605</creationdate><title>Optimization of a PML absorber's conductivity profile using FDTD</title><author>Li, Ching-Lieh ; Liu, Chien-Wei ; Chen, Shao-Hon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3054-d5eba950be9012b02aabdbda0fb8b9c738da397f06475249dda19b010d0120a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>conductivity profile</topic><topic>FDTD</topic><topic>optimization</topic><topic>PML</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ching-Lieh</creatorcontrib><creatorcontrib>Liu, Chien-Wei</creatorcontrib><creatorcontrib>Chen, Shao-Hon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ching-Lieh</au><au>Liu, Chien-Wei</au><au>Chen, Shao-Hon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a PML absorber's conductivity profile using FDTD</atitle><jtitle>Microwave and optical technology letters</jtitle><addtitle>Microw. Opt. Technol. Lett</addtitle><date>2003-06-05</date><risdate>2003</risdate><volume>37</volume><issue>5</issue><spage>380</spage><epage>383</epage><pages>380-383</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>The conductivity profile of a perfectly matched layer (PML) absorber is optimized to increase the absorption performance. The key parameters describing a polynomial‐type conductivity profile for an anisotropic PML absorber are optimized by employing a steady‐state genetic algorithm (SSGA). A Gaussian line source is used for excitation in free space in order to minimize local error. The optimum polynomial parameters are reported for PML absorbers of various layers. Numerical results show that PML absorption can be improved by at least 7–15 dB, independently of the space‐domain and grid sizes. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 37: 380–383, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.10924</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/mop.10924</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2003-06, Vol.37 (5), p.380-383
issn 0895-2477
1098-2760
language eng
recordid cdi_crossref_primary_10_1002_mop_10924
source Access via Wiley Online Library
subjects conductivity profile
FDTD
optimization
PML
title Optimization of a PML absorber's conductivity profile using FDTD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20PML%20absorber's%20conductivity%20profile%20using%20FDTD&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Li,%20Ching-Lieh&rft.date=2003-06-05&rft.volume=37&rft.issue=5&rft.spage=380&rft.epage=383&rft.pages=380-383&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.10924&rft_dat=%3Cwiley_cross%3EMOP10924%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true