Existence of global strong solution to the micropolar fluid system in a bounded domain
In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq ty...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2005-09, Vol.28 (13), p.1507-1526 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1526 |
---|---|
container_issue | 13 |
container_start_page | 1507 |
container_title | Mathematical methods in the applied sciences |
container_volume | 28 |
creator | Yamaguchi, Norikazu |
description | In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.617 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</originalsourceid><addsrcrecordid>eNp1kEFPwjAYhhujiYjGv9CL8WCGX7d1XY9IEI2AF4XES1O6DqvdStoR4d87MqMnT9_l-Z68eRC6JDAgAPFtVclBRtgR6hHgPCIpy45RDwiDKI1JeorOQvgAgJyQuIcW450Jja6Vxq7Ea-tW0uLQeFevcXB22xhX48bh5l3jyijvNs5Kj0u7NQUO-_a1wqbGEq_cti50gQtXSVOfo5NS2qAvfm4fvd6PX0YP0fR58jgaTiOVcMqiMgcOKRQ5sBWlPCWJimWcQ0I5VzGU8Qp4odqpACktJIc4TXMNGiQnWtIk6aPrztsuC8HrUmy8qaTfCwLikEO0OUSboyWvOnIjg5K29LJWJvzhGec0Y7Tlbjruy1i9_08nZrNhZ406-hBx90tL_ykyljAqlvOJyJ6W88VbfidI8g0hSnvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence of global strong solution to the micropolar fluid system in a bounded domain</title><source>Wiley Online Library All Journals</source><creator>Yamaguchi, Norikazu</creator><creatorcontrib>Yamaguchi, Norikazu</creatorcontrib><description>In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.617</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>analytic semigroup ; Exact sciences and technology ; global existence ; magneto-micropolar fluid system ; Mathematical analysis ; Mathematics ; micropolar fluid system ; Operator theory ; Partial differential equations ; resolvent estimates ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2005-09, Vol.28 (13), p.1507-1526</ispartof><rights>Copyright © 2005 John Wiley & Sons, Ltd.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</citedby><cites>FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.617$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.617$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16995675$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaguchi, Norikazu</creatorcontrib><title>Existence of global strong solution to the micropolar fluid system in a bounded domain</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley & Sons, Ltd.</description><subject>analytic semigroup</subject><subject>Exact sciences and technology</subject><subject>global existence</subject><subject>magneto-micropolar fluid system</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>micropolar fluid system</subject><subject>Operator theory</subject><subject>Partial differential equations</subject><subject>resolvent estimates</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwjAYhhujiYjGv9CL8WCGX7d1XY9IEI2AF4XES1O6DqvdStoR4d87MqMnT9_l-Z68eRC6JDAgAPFtVclBRtgR6hHgPCIpy45RDwiDKI1JeorOQvgAgJyQuIcW450Jja6Vxq7Ea-tW0uLQeFevcXB22xhX48bh5l3jyijvNs5Kj0u7NQUO-_a1wqbGEq_cti50gQtXSVOfo5NS2qAvfm4fvd6PX0YP0fR58jgaTiOVcMqiMgcOKRQ5sBWlPCWJimWcQ0I5VzGU8Qp4odqpACktJIc4TXMNGiQnWtIk6aPrztsuC8HrUmy8qaTfCwLikEO0OUSboyWvOnIjg5K29LJWJvzhGec0Y7Tlbjruy1i9_08nZrNhZ406-hBx90tL_ykyljAqlvOJyJ6W88VbfidI8g0hSnvA</recordid><startdate>20050910</startdate><enddate>20050910</enddate><creator>Yamaguchi, Norikazu</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050910</creationdate><title>Existence of global strong solution to the micropolar fluid system in a bounded domain</title><author>Yamaguchi, Norikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>analytic semigroup</topic><topic>Exact sciences and technology</topic><topic>global existence</topic><topic>magneto-micropolar fluid system</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>micropolar fluid system</topic><topic>Operator theory</topic><topic>Partial differential equations</topic><topic>resolvent estimates</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Norikazu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Norikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of global strong solution to the micropolar fluid system in a bounded domain</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2005-09-10</date><risdate>2005</risdate><volume>28</volume><issue>13</issue><spage>1507</spage><epage>1526</epage><pages>1507-1526</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.617</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2005-09, Vol.28 (13), p.1507-1526 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mma_617 |
source | Wiley Online Library All Journals |
subjects | analytic semigroup Exact sciences and technology global existence magneto-micropolar fluid system Mathematical analysis Mathematics micropolar fluid system Operator theory Partial differential equations resolvent estimates Sciences and techniques of general use |
title | Existence of global strong solution to the micropolar fluid system in a bounded domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20global%20strong%20solution%20to%20the%20micropolar%20fluid%20system%20in%20a%20bounded%20domain&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yamaguchi,%20Norikazu&rft.date=2005-09-10&rft.volume=28&rft.issue=13&rft.spage=1507&rft.epage=1526&rft.pages=1507-1526&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.617&rft_dat=%3Cwiley_cross%3EMMA617%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |