Existence of global strong solution to the micropolar fluid system in a bounded domain

In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2005-09, Vol.28 (13), p.1507-1526
1. Verfasser: Yamaguchi, Norikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1526
container_issue 13
container_start_page 1507
container_title Mathematical methods in the applied sciences
container_volume 28
creator Yamaguchi, Norikazu
description In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.617
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</originalsourceid><addsrcrecordid>eNp1kEFPwjAYhhujiYjGv9CL8WCGX7d1XY9IEI2AF4XES1O6DqvdStoR4d87MqMnT9_l-Z68eRC6JDAgAPFtVclBRtgR6hHgPCIpy45RDwiDKI1JeorOQvgAgJyQuIcW450Jja6Vxq7Ea-tW0uLQeFevcXB22xhX48bh5l3jyijvNs5Kj0u7NQUO-_a1wqbGEq_cti50gQtXSVOfo5NS2qAvfm4fvd6PX0YP0fR58jgaTiOVcMqiMgcOKRQ5sBWlPCWJimWcQ0I5VzGU8Qp4odqpACktJIc4TXMNGiQnWtIk6aPrztsuC8HrUmy8qaTfCwLikEO0OUSboyWvOnIjg5K29LJWJvzhGec0Y7Tlbjruy1i9_08nZrNhZ406-hBx90tL_ykyljAqlvOJyJ6W88VbfidI8g0hSnvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence of global strong solution to the micropolar fluid system in a bounded domain</title><source>Wiley Online Library All Journals</source><creator>Yamaguchi, Norikazu</creator><creatorcontrib>Yamaguchi, Norikazu</creatorcontrib><description>In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.617</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>analytic semigroup ; Exact sciences and technology ; global existence ; magneto-micropolar fluid system ; Mathematical analysis ; Mathematics ; micropolar fluid system ; Operator theory ; Partial differential equations ; resolvent estimates ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2005-09, Vol.28 (13), p.1507-1526</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</citedby><cites>FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.617$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.617$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16995675$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaguchi, Norikazu</creatorcontrib><title>Existence of global strong solution to the micropolar fluid system in a bounded domain</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>analytic semigroup</subject><subject>Exact sciences and technology</subject><subject>global existence</subject><subject>magneto-micropolar fluid system</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>micropolar fluid system</subject><subject>Operator theory</subject><subject>Partial differential equations</subject><subject>resolvent estimates</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwjAYhhujiYjGv9CL8WCGX7d1XY9IEI2AF4XES1O6DqvdStoR4d87MqMnT9_l-Z68eRC6JDAgAPFtVclBRtgR6hHgPCIpy45RDwiDKI1JeorOQvgAgJyQuIcW450Jja6Vxq7Ea-tW0uLQeFevcXB22xhX48bh5l3jyijvNs5Kj0u7NQUO-_a1wqbGEq_cti50gQtXSVOfo5NS2qAvfm4fvd6PX0YP0fR58jgaTiOVcMqiMgcOKRQ5sBWlPCWJimWcQ0I5VzGU8Qp4odqpACktJIc4TXMNGiQnWtIk6aPrztsuC8HrUmy8qaTfCwLikEO0OUSboyWvOnIjg5K29LJWJvzhGec0Y7Tlbjruy1i9_08nZrNhZ406-hBx90tL_ykyljAqlvOJyJ6W88VbfidI8g0hSnvA</recordid><startdate>20050910</startdate><enddate>20050910</enddate><creator>Yamaguchi, Norikazu</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050910</creationdate><title>Existence of global strong solution to the micropolar fluid system in a bounded domain</title><author>Yamaguchi, Norikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3957-f809040d807b559413c2a2803599c20f2b09dc0810045da902448e0e0a91ea533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>analytic semigroup</topic><topic>Exact sciences and technology</topic><topic>global existence</topic><topic>magneto-micropolar fluid system</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>micropolar fluid system</topic><topic>Operator theory</topic><topic>Partial differential equations</topic><topic>resolvent estimates</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Norikazu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Norikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of global strong solution to the micropolar fluid system in a bounded domain</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2005-09-10</date><risdate>2005</risdate><volume>28</volume><issue>13</issue><spage>1507</spage><epage>1526</epage><pages>1507-1526</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, Lp–Lq type estimates are obtained. By use of the Lp–Lq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.617</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2005-09, Vol.28 (13), p.1507-1526
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_617
source Wiley Online Library All Journals
subjects analytic semigroup
Exact sciences and technology
global existence
magneto-micropolar fluid system
Mathematical analysis
Mathematics
micropolar fluid system
Operator theory
Partial differential equations
resolvent estimates
Sciences and techniques of general use
title Existence of global strong solution to the micropolar fluid system in a bounded domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20global%20strong%20solution%20to%20the%20micropolar%20fluid%20system%20in%20a%20bounded%20domain&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yamaguchi,%20Norikazu&rft.date=2005-09-10&rft.volume=28&rft.issue=13&rft.spage=1507&rft.epage=1526&rft.pages=1507-1526&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.617&rft_dat=%3Cwiley_cross%3EMMA617%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true