Linearization of third‐order ordinary differential equations via point transformations

The linearization problem for scalar third‐order ordinary differential equations via point transformations was solved partially in the works of Al‐Dweik et al by the use of the Cartan equivalence method. In order to solve this problem completely, the Cartan equivalence method is applied to provide a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-11, Vol.41 (16), p.6955-6967
Hauptverfasser: Al‐Dweik, Ahmad Y., Mustafa, M. T., Mahomed, Fazal Mahmood, Alassar, Rajai S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6967
container_issue 16
container_start_page 6955
container_title Mathematical methods in the applied sciences
container_volume 41
creator Al‐Dweik, Ahmad Y.
Mustafa, M. T.
Mahomed, Fazal Mahmood
Alassar, Rajai S.
description The linearization problem for scalar third‐order ordinary differential equations via point transformations was solved partially in the works of Al‐Dweik et al by the use of the Cartan equivalence method. In order to solve this problem completely, the Cartan equivalence method is applied to provide an invariant characterization of the linearizable third‐order ordinary differential equation , which admits a four‐dimensional point symmetry Lie algebra. The invariant characterization is given in terms of function f in a compact form. A simple procedure to construct the equivalent canonical form by use of an obtained invariant is also presented. The approach provides auxiliary functions, which can be effectively utilized to determine the point transformation that does the reduction to the equivalent canonical form. Furthermore, illustrations to the main theorem and applications are given.
doi_str_mv 10.1002/mma.5208
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_5208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mma_5208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728-c28682fd96d322b0d400c82987a77bbcdcfe952b2ca098e09c8261df728753083</originalsourceid><addsrcrecordid>eNotkMtKBDEQRYMo2I6Cn5Clmx4r1Y8kSxnUERrczMJdk84DI9PJmLSCrvwEv9EvscdxU7U49xbFIeSSwZIB4PU4qmWDII5IwUDKktW8PSYFMA5ljaw-JWc5vwCAYAwL8tT5YFXyn2ryMdDo6PTsk_n5-o7J2ETn6YNKH9R452yyYfJqS-3r218-03ev6C76MNEpqZBdTOOBnJMTp7bZXvzvBdnc3W5W67J7vH9Y3XSl5ihKjaIV6IxsTYU4gKkBtEApuOJ8GLTRzsoGB9QKpLAgZ9gy4-YubyoQ1YJcHc7qFHNO1vW75Mf54Z5BvxfSz0L6vZDqF0q1Vk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linearization of third‐order ordinary differential equations via point transformations</title><source>Wiley Online Library All Journals</source><creator>Al‐Dweik, Ahmad Y. ; Mustafa, M. T. ; Mahomed, Fazal Mahmood ; Alassar, Rajai S.</creator><creatorcontrib>Al‐Dweik, Ahmad Y. ; Mustafa, M. T. ; Mahomed, Fazal Mahmood ; Alassar, Rajai S.</creatorcontrib><description>The linearization problem for scalar third‐order ordinary differential equations via point transformations was solved partially in the works of Al‐Dweik et al by the use of the Cartan equivalence method. In order to solve this problem completely, the Cartan equivalence method is applied to provide an invariant characterization of the linearizable third‐order ordinary differential equation , which admits a four‐dimensional point symmetry Lie algebra. The invariant characterization is given in terms of function f in a compact form. A simple procedure to construct the equivalent canonical form by use of an obtained invariant is also presented. The approach provides auxiliary functions, which can be effectively utilized to determine the point transformation that does the reduction to the equivalent canonical form. Furthermore, illustrations to the main theorem and applications are given.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5208</identifier><language>eng</language><ispartof>Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6955-6967</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728-c28682fd96d322b0d400c82987a77bbcdcfe952b2ca098e09c8261df728753083</citedby><cites>FETCH-LOGICAL-c728-c28682fd96d322b0d400c82987a77bbcdcfe952b2ca098e09c8261df728753083</cites><orcidid>0000-0002-6995-5820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Al‐Dweik, Ahmad Y.</creatorcontrib><creatorcontrib>Mustafa, M. T.</creatorcontrib><creatorcontrib>Mahomed, Fazal Mahmood</creatorcontrib><creatorcontrib>Alassar, Rajai S.</creatorcontrib><title>Linearization of third‐order ordinary differential equations via point transformations</title><title>Mathematical methods in the applied sciences</title><description>The linearization problem for scalar third‐order ordinary differential equations via point transformations was solved partially in the works of Al‐Dweik et al by the use of the Cartan equivalence method. In order to solve this problem completely, the Cartan equivalence method is applied to provide an invariant characterization of the linearizable third‐order ordinary differential equation , which admits a four‐dimensional point symmetry Lie algebra. The invariant characterization is given in terms of function f in a compact form. A simple procedure to construct the equivalent canonical form by use of an obtained invariant is also presented. The approach provides auxiliary functions, which can be effectively utilized to determine the point transformation that does the reduction to the equivalent canonical form. Furthermore, illustrations to the main theorem and applications are given.</description><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkMtKBDEQRYMo2I6Cn5Clmx4r1Y8kSxnUERrczMJdk84DI9PJmLSCrvwEv9EvscdxU7U49xbFIeSSwZIB4PU4qmWDII5IwUDKktW8PSYFMA5ljaw-JWc5vwCAYAwL8tT5YFXyn2ryMdDo6PTsk_n5-o7J2ETn6YNKH9R452yyYfJqS-3r218-03ev6C76MNEpqZBdTOOBnJMTp7bZXvzvBdnc3W5W67J7vH9Y3XSl5ihKjaIV6IxsTYU4gKkBtEApuOJ8GLTRzsoGB9QKpLAgZ9gy4-YubyoQ1YJcHc7qFHNO1vW75Mf54Z5BvxfSz0L6vZDqF0q1Vk0</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Al‐Dweik, Ahmad Y.</creator><creator>Mustafa, M. T.</creator><creator>Mahomed, Fazal Mahmood</creator><creator>Alassar, Rajai S.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6995-5820</orcidid></search><sort><creationdate>20181115</creationdate><title>Linearization of third‐order ordinary differential equations via point transformations</title><author>Al‐Dweik, Ahmad Y. ; Mustafa, M. T. ; Mahomed, Fazal Mahmood ; Alassar, Rajai S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728-c28682fd96d322b0d400c82987a77bbcdcfe952b2ca098e09c8261df728753083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al‐Dweik, Ahmad Y.</creatorcontrib><creatorcontrib>Mustafa, M. T.</creatorcontrib><creatorcontrib>Mahomed, Fazal Mahmood</creatorcontrib><creatorcontrib>Alassar, Rajai S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al‐Dweik, Ahmad Y.</au><au>Mustafa, M. T.</au><au>Mahomed, Fazal Mahmood</au><au>Alassar, Rajai S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearization of third‐order ordinary differential equations via point transformations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>41</volume><issue>16</issue><spage>6955</spage><epage>6967</epage><pages>6955-6967</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The linearization problem for scalar third‐order ordinary differential equations via point transformations was solved partially in the works of Al‐Dweik et al by the use of the Cartan equivalence method. In order to solve this problem completely, the Cartan equivalence method is applied to provide an invariant characterization of the linearizable third‐order ordinary differential equation , which admits a four‐dimensional point symmetry Lie algebra. The invariant characterization is given in terms of function f in a compact form. A simple procedure to construct the equivalent canonical form by use of an obtained invariant is also presented. The approach provides auxiliary functions, which can be effectively utilized to determine the point transformation that does the reduction to the equivalent canonical form. Furthermore, illustrations to the main theorem and applications are given.</abstract><doi>10.1002/mma.5208</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6995-5820</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-11, Vol.41 (16), p.6955-6967
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_5208
source Wiley Online Library All Journals
title Linearization of third‐order ordinary differential equations via point transformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearization%20of%20third%E2%80%90order%20ordinary%20differential%20equations%20via%20point%20transformations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Al%E2%80%90Dweik,%20Ahmad%20Y.&rft.date=2018-11-15&rft.volume=41&rft.issue=16&rft.spage=6955&rft.epage=6967&rft.pages=6955-6967&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5208&rft_dat=%3Ccrossref%3E10_1002_mma_5208%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true