A direct method for solving an anisotropic mean curvature flow of plane curves with an external force

A new method for solution of the evolution of plane curves satisfying the geometric equation v=β(x,k,ν), where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ⊂ ℝ2 at the point x∈Γ, is proposed. We derive a governing system of partial differential equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2004-09, Vol.27 (13), p.1545-1565
Hauptverfasser: Mikula, Karol, S̆evc̆ovic̆, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1565
container_issue 13
container_start_page 1545
container_title Mathematical methods in the applied sciences
container_volume 27
creator Mikula, Karol
S̆evc̆ovic̆, Daniel
description A new method for solution of the evolution of plane curves satisfying the geometric equation v=β(x,k,ν), where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ⊂ ℝ2 at the point x∈Γ, is proposed. We derive a governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves and prove local in time existence of a classical solution. These equations include a non‐trivial tangential velocity functional governing a uniform redistribution of grid points and thus preventing numerically computed solutions from forming various instabilities. We discretize the governing system of equations in order to find a numerical solution for 2D anisotropic interface motions and image segmentation problems. Copyright © 2004 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.514
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3274-310db13ce458e5b2f380d750278088f47a717e9646b3dea889f2aac8495b738d3</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs4p_gu5iAfpTJq0SY9j6Obc9DLZMWTpi4t27Ui6X_-9nRU9CQ8ePD7ve_gidE1JjxIS369WupdQfoI6lGRZRLlIT1GHUEEiHlN-ji5C-CCESErjDoI-zp0HU-MV1Msqx7byOFTF1pXvWJfNuFDVvlo704jmYDZ-q-uNB2yLaocri9eFLuH7DgHvXL08_sG-Bl_q4phn4BKdWV0EuPrZXfT2-DAbjKLJ6_Bp0J9EhsWCR4ySfEGZAZ5ISBaxZZLkIiGxkERKy4UWVECW8nTBctBSZjbW2kieJQvBZM666LbNNb4KwYNVa-9W2h8UJerYjmraUU07jbxp5VoHowvrdWlc-ONJJmUqRePuWrdzBRz-i1PTab9NjVrtQg37X639p0oFE4mavwwVmz8nMzoeqxH7AmOSgf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A direct method for solving an anisotropic mean curvature flow of plane curves with an external force</title><source>Access via Wiley Online Library</source><creator>Mikula, Karol ; S̆evc̆ovic̆, Daniel</creator><creatorcontrib>Mikula, Karol ; S̆evc̆ovic̆, Daniel</creatorcontrib><description>A new method for solution of the evolution of plane curves satisfying the geometric equation v=β(x,k,ν), where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ⊂ ℝ2 at the point x∈Γ, is proposed. We derive a governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves and prove local in time existence of a classical solution. These equations include a non‐trivial tangential velocity functional governing a uniform redistribution of grid points and thus preventing numerically computed solutions from forming various instabilities. We discretize the governing system of equations in order to find a numerical solution for 2D anisotropic interface motions and image segmentation problems. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.514</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>anisotropy ; Differential geometry ; Exact sciences and technology ; external force ; Geometry ; image segmentation ; interface ; Lagrangian approach ; Mathematical analysis ; Mathematics ; mean curvature flow ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Sciences and techniques of general use ; semi-implicit scheme</subject><ispartof>Mathematical methods in the applied sciences, 2004-09, Vol.27 (13), p.1545-1565</ispartof><rights>Copyright © 2004 John Wiley &amp; Sons, Ltd.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3274-310db13ce458e5b2f380d750278088f47a717e9646b3dea889f2aac8495b738d3</citedby><cites>FETCH-LOGICAL-c3274-310db13ce458e5b2f380d750278088f47a717e9646b3dea889f2aac8495b738d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.514$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.514$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15988687$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikula, Karol</creatorcontrib><creatorcontrib>S̆evc̆ovic̆, Daniel</creatorcontrib><title>A direct method for solving an anisotropic mean curvature flow of plane curves with an external force</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>A new method for solution of the evolution of plane curves satisfying the geometric equation v=β(x,k,ν), where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ⊂ ℝ2 at the point x∈Γ, is proposed. We derive a governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves and prove local in time existence of a classical solution. These equations include a non‐trivial tangential velocity functional governing a uniform redistribution of grid points and thus preventing numerically computed solutions from forming various instabilities. We discretize the governing system of equations in order to find a numerical solution for 2D anisotropic interface motions and image segmentation problems. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><subject>anisotropy</subject><subject>Differential geometry</subject><subject>Exact sciences and technology</subject><subject>external force</subject><subject>Geometry</subject><subject>image segmentation</subject><subject>interface</subject><subject>Lagrangian approach</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>mean curvature flow</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>semi-implicit scheme</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs4p_gu5iAfpTJq0SY9j6Obc9DLZMWTpi4t27Ui6X_-9nRU9CQ8ePD7ve_gidE1JjxIS369WupdQfoI6lGRZRLlIT1GHUEEiHlN-ji5C-CCESErjDoI-zp0HU-MV1Msqx7byOFTF1pXvWJfNuFDVvlo704jmYDZ-q-uNB2yLaocri9eFLuH7DgHvXL08_sG-Bl_q4phn4BKdWV0EuPrZXfT2-DAbjKLJ6_Bp0J9EhsWCR4ySfEGZAZ5ISBaxZZLkIiGxkERKy4UWVECW8nTBctBSZjbW2kieJQvBZM666LbNNb4KwYNVa-9W2h8UJerYjmraUU07jbxp5VoHowvrdWlc-ONJJmUqRePuWrdzBRz-i1PTab9NjVrtQg37X639p0oFE4mavwwVmz8nMzoeqxH7AmOSgf8</recordid><startdate>20040910</startdate><enddate>20040910</enddate><creator>Mikula, Karol</creator><creator>S̆evc̆ovic̆, Daniel</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040910</creationdate><title>A direct method for solving an anisotropic mean curvature flow of plane curves with an external force</title><author>Mikula, Karol ; S̆evc̆ovic̆, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3274-310db13ce458e5b2f380d750278088f47a717e9646b3dea889f2aac8495b738d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>anisotropy</topic><topic>Differential geometry</topic><topic>Exact sciences and technology</topic><topic>external force</topic><topic>Geometry</topic><topic>image segmentation</topic><topic>interface</topic><topic>Lagrangian approach</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>mean curvature flow</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>semi-implicit scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikula, Karol</creatorcontrib><creatorcontrib>S̆evc̆ovic̆, Daniel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikula, Karol</au><au>S̆evc̆ovic̆, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A direct method for solving an anisotropic mean curvature flow of plane curves with an external force</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2004-09-10</date><risdate>2004</risdate><volume>27</volume><issue>13</issue><spage>1545</spage><epage>1565</epage><pages>1545-1565</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>A new method for solution of the evolution of plane curves satisfying the geometric equation v=β(x,k,ν), where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ⊂ ℝ2 at the point x∈Γ, is proposed. We derive a governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves and prove local in time existence of a classical solution. These equations include a non‐trivial tangential velocity functional governing a uniform redistribution of grid points and thus preventing numerically computed solutions from forming various instabilities. We discretize the governing system of equations in order to find a numerical solution for 2D anisotropic interface motions and image segmentation problems. Copyright © 2004 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.514</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2004-09, Vol.27 (13), p.1545-1565
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_514
source Access via Wiley Online Library
subjects anisotropy
Differential geometry
Exact sciences and technology
external force
Geometry
image segmentation
interface
Lagrangian approach
Mathematical analysis
Mathematics
mean curvature flow
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Sciences and techniques of general use
semi-implicit scheme
title A direct method for solving an anisotropic mean curvature flow of plane curves with an external force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20direct%20method%20for%20solving%20an%20anisotropic%20mean%20curvature%20flow%20of%20plane%20curves%20with%20an%20external%20force&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Mikula,%20Karol&rft.date=2004-09-10&rft.volume=27&rft.issue=13&rft.spage=1545&rft.epage=1565&rft.pages=1545-1565&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.514&rft_dat=%3Cwiley_cross%3EMMA514%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true