The long-time behaviour of the thermoconvective flow in a porous medium

For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2004-05, Vol.27 (8), p.907-930
Hauptverfasser: Efendiev, M. A., Fuhrmann, J., Zelik, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 930
container_issue 8
container_start_page 907
container_title Mathematical methods in the applied sciences
container_volume 27
creator Efendiev, M. A.
Fuhrmann, J.
Zelik, S. V.
description For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.478
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_MCVB1JM1_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</originalsourceid><addsrcrecordid>eNp1z7FOwzAQgGELgUQpiFfwxoBS7MSJnbFEtIAaWAqMluOcqSGpKztt6dsTFMTGcLrhPp30I3RJyYQSEt-0rZowLo7QiJI8jyjj2TEaEcpJxGLKTtFZCB-EEEFpPELz5Qpw49bvUWdbwBWs1M66rcfO4K4_9eNbp916B7qzO8CmcXts11jhjfNuG3ALtd225-jEqCbAxe8eo5fZ3bK4jxbP84diuoh0nHMRCcpAG5MxbnSaGACqOeGmUpBXiqQQp0miY1ZlWS5SJoRKs6qua0aYyBTjNBmjq-Gv9i4ED0ZuvG2VP0hK5E-_7Ptl39_L60HubQOH_5gsy-mgo0Hb0MHXn1b-U2Y84al8e5rLsni9pY8llUXyDRufauc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The long-time behaviour of the thermoconvective flow in a porous medium</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Efendiev, M. A. ; Fuhrmann, J. ; Zelik, S. V.</creator><creatorcontrib>Efendiev, M. A. ; Fuhrmann, J. ; Zelik, S. V.</creatorcontrib><description>For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.478</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Boussinesq approximation ; equations of coupled heat and fluid flow in a porous medium ; finite volumes ; global attractor ; Hausdorff and fractal dimension ; numerical solution ; Rayleigh number ; upper and lower bounds</subject><ispartof>Mathematical methods in the applied sciences, 2004-05, Vol.27 (8), p.907-930</ispartof><rights>Copyright © 2004 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</citedby><cites>FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.478$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.478$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Efendiev, M. A.</creatorcontrib><creatorcontrib>Fuhrmann, J.</creatorcontrib><creatorcontrib>Zelik, S. V.</creatorcontrib><title>The long-time behaviour of the thermoconvective flow in a porous medium</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><subject>Boussinesq approximation</subject><subject>equations of coupled heat and fluid flow in a porous medium</subject><subject>finite volumes</subject><subject>global attractor</subject><subject>Hausdorff and fractal dimension</subject><subject>numerical solution</subject><subject>Rayleigh number</subject><subject>upper and lower bounds</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1z7FOwzAQgGELgUQpiFfwxoBS7MSJnbFEtIAaWAqMluOcqSGpKztt6dsTFMTGcLrhPp30I3RJyYQSEt-0rZowLo7QiJI8jyjj2TEaEcpJxGLKTtFZCB-EEEFpPELz5Qpw49bvUWdbwBWs1M66rcfO4K4_9eNbp916B7qzO8CmcXts11jhjfNuG3ALtd225-jEqCbAxe8eo5fZ3bK4jxbP84diuoh0nHMRCcpAG5MxbnSaGACqOeGmUpBXiqQQp0miY1ZlWS5SJoRKs6qua0aYyBTjNBmjq-Gv9i4ED0ZuvG2VP0hK5E-_7Ptl39_L60HubQOH_5gsy-mgo0Hb0MHXn1b-U2Y84al8e5rLsni9pY8llUXyDRufauc</recordid><startdate>20040525</startdate><enddate>20040525</enddate><creator>Efendiev, M. A.</creator><creator>Fuhrmann, J.</creator><creator>Zelik, S. V.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040525</creationdate><title>The long-time behaviour of the thermoconvective flow in a porous medium</title><author>Efendiev, M. A. ; Fuhrmann, J. ; Zelik, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Boussinesq approximation</topic><topic>equations of coupled heat and fluid flow in a porous medium</topic><topic>finite volumes</topic><topic>global attractor</topic><topic>Hausdorff and fractal dimension</topic><topic>numerical solution</topic><topic>Rayleigh number</topic><topic>upper and lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efendiev, M. A.</creatorcontrib><creatorcontrib>Fuhrmann, J.</creatorcontrib><creatorcontrib>Zelik, S. V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efendiev, M. A.</au><au>Fuhrmann, J.</au><au>Zelik, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The long-time behaviour of the thermoconvective flow in a porous medium</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2004-05-25</date><risdate>2004</risdate><volume>27</volume><issue>8</issue><spage>907</spage><epage>930</epage><pages>907-930</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.478</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2004-05, Vol.27 (8), p.907-930
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_478
source Wiley Online Library Journals Frontfile Complete
subjects Boussinesq approximation
equations of coupled heat and fluid flow in a porous medium
finite volumes
global attractor
Hausdorff and fractal dimension
numerical solution
Rayleigh number
upper and lower bounds
title The long-time behaviour of the thermoconvective flow in a porous medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20long-time%20behaviour%20of%20the%20thermoconvective%20flow%20in%20a%20porous%20medium&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Efendiev,%20M.%20A.&rft.date=2004-05-25&rft.volume=27&rft.issue=8&rft.spage=907&rft.epage=930&rft.pages=907-930&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.478&rft_dat=%3Cistex_cross%3Eark_67375_WNG_MCVB1JM1_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true