The long-time behaviour of the thermoconvective flow in a porous medium
For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2004-05, Vol.27 (8), p.907-930 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 930 |
---|---|
container_issue | 8 |
container_start_page | 907 |
container_title | Mathematical methods in the applied sciences |
container_volume | 27 |
creator | Efendiev, M. A. Fuhrmann, J. Zelik, S. V. |
description | For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.478 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_MCVB1JM1_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</originalsourceid><addsrcrecordid>eNp1z7FOwzAQgGELgUQpiFfwxoBS7MSJnbFEtIAaWAqMluOcqSGpKztt6dsTFMTGcLrhPp30I3RJyYQSEt-0rZowLo7QiJI8jyjj2TEaEcpJxGLKTtFZCB-EEEFpPELz5Qpw49bvUWdbwBWs1M66rcfO4K4_9eNbp916B7qzO8CmcXts11jhjfNuG3ALtd225-jEqCbAxe8eo5fZ3bK4jxbP84diuoh0nHMRCcpAG5MxbnSaGACqOeGmUpBXiqQQp0miY1ZlWS5SJoRKs6qua0aYyBTjNBmjq-Gv9i4ED0ZuvG2VP0hK5E-_7Ptl39_L60HubQOH_5gsy-mgo0Hb0MHXn1b-U2Y84al8e5rLsni9pY8llUXyDRufauc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The long-time behaviour of the thermoconvective flow in a porous medium</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Efendiev, M. A. ; Fuhrmann, J. ; Zelik, S. V.</creator><creatorcontrib>Efendiev, M. A. ; Fuhrmann, J. ; Zelik, S. V.</creatorcontrib><description>For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.478</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Boussinesq approximation ; equations of coupled heat and fluid flow in a porous medium ; finite volumes ; global attractor ; Hausdorff and fractal dimension ; numerical solution ; Rayleigh number ; upper and lower bounds</subject><ispartof>Mathematical methods in the applied sciences, 2004-05, Vol.27 (8), p.907-930</ispartof><rights>Copyright © 2004 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</citedby><cites>FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.478$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.478$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Efendiev, M. A.</creatorcontrib><creatorcontrib>Fuhrmann, J.</creatorcontrib><creatorcontrib>Zelik, S. V.</creatorcontrib><title>The long-time behaviour of the thermoconvective flow in a porous medium</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley & Sons, Ltd.</description><subject>Boussinesq approximation</subject><subject>equations of coupled heat and fluid flow in a porous medium</subject><subject>finite volumes</subject><subject>global attractor</subject><subject>Hausdorff and fractal dimension</subject><subject>numerical solution</subject><subject>Rayleigh number</subject><subject>upper and lower bounds</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1z7FOwzAQgGELgUQpiFfwxoBS7MSJnbFEtIAaWAqMluOcqSGpKztt6dsTFMTGcLrhPp30I3RJyYQSEt-0rZowLo7QiJI8jyjj2TEaEcpJxGLKTtFZCB-EEEFpPELz5Qpw49bvUWdbwBWs1M66rcfO4K4_9eNbp916B7qzO8CmcXts11jhjfNuG3ALtd225-jEqCbAxe8eo5fZ3bK4jxbP84diuoh0nHMRCcpAG5MxbnSaGACqOeGmUpBXiqQQp0miY1ZlWS5SJoRKs6qua0aYyBTjNBmjq-Gv9i4ED0ZuvG2VP0hK5E-_7Ptl39_L60HubQOH_5gsy-mgo0Hb0MHXn1b-U2Y84al8e5rLsni9pY8llUXyDRufauc</recordid><startdate>20040525</startdate><enddate>20040525</enddate><creator>Efendiev, M. A.</creator><creator>Fuhrmann, J.</creator><creator>Zelik, S. V.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040525</creationdate><title>The long-time behaviour of the thermoconvective flow in a porous medium</title><author>Efendiev, M. A. ; Fuhrmann, J. ; Zelik, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-814ecff647fc53fee1c707fbae9ba05e2533c24b66985488a56bddd40486a4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Boussinesq approximation</topic><topic>equations of coupled heat and fluid flow in a porous medium</topic><topic>finite volumes</topic><topic>global attractor</topic><topic>Hausdorff and fractal dimension</topic><topic>numerical solution</topic><topic>Rayleigh number</topic><topic>upper and lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efendiev, M. A.</creatorcontrib><creatorcontrib>Fuhrmann, J.</creatorcontrib><creatorcontrib>Zelik, S. V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efendiev, M. A.</au><au>Fuhrmann, J.</au><au>Zelik, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The long-time behaviour of the thermoconvective flow in a porous medium</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2004-05-25</date><risdate>2004</risdate><volume>27</volume><issue>8</issue><spage>907</spage><epage>930</epage><pages>907-930</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.478</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2004-05, Vol.27 (8), p.907-930 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mma_478 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boussinesq approximation equations of coupled heat and fluid flow in a porous medium finite volumes global attractor Hausdorff and fractal dimension numerical solution Rayleigh number upper and lower bounds |
title | The long-time behaviour of the thermoconvective flow in a porous medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20long-time%20behaviour%20of%20the%20thermoconvective%20flow%20in%20a%20porous%20medium&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Efendiev,%20M.%20A.&rft.date=2004-05-25&rft.volume=27&rft.issue=8&rft.spage=907&rft.epage=930&rft.pages=907-930&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.478&rft_dat=%3Cistex_cross%3Eark_67375_WNG_MCVB1JM1_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |