On a numerical algorithm for the solution of the radial Loewner equation
The Loewner partial differential equation provides a one‐parametric family of conformal maps on the unit disk. The images describe a flow of an expanding simply‐connected domain, called the Loewner flow, on the complex plane. In this paper, we present a numerical algorithm for solving the radial Loe...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-01, Vol.41 (2), p.714-723 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 2 |
container_start_page | 714 |
container_title | Mathematical methods in the applied sciences |
container_volume | 41 |
creator | Hotta, Ikkei Shimauchi, Hirokazu |
description | The Loewner partial differential equation provides a one‐parametric family of conformal maps on the unit disk. The images describe a flow of an expanding simply‐connected domain, called the Loewner flow, on the complex plane. In this paper, we present a numerical algorithm for solving the radial Loewner partial differential equation. The algorithm is applied to visualization of Loewner flows with the performance and precision. From the theoretical point of view, our algorithm is based on a recursive formula for determining coefficients of polynomial approximations. We prove that each coefficient converges to true values with reasonable regularity. |
doi_str_mv | 10.1002/mma.4640 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_4640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA4640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2920-f4806adf9ee8ef2f5f8f330d8ae5ee0ee5bc6005712cfad964622c33a99f51553</originalsourceid><addsrcrecordid>eNp10LFOwzAQgGELgUQoSDyCRxaXs2Mn8VhVQJFSdYE5Ms6ZBiUx2Imqvj1Jy8p0Ot2nG35C7jksOYB47DqzlJmEC5Jw0JpxmWeXJAGeA5OCy2tyE-MXABSci4Rsdj01tB87DI01LTXtpw_NsO-o84EOe6TRt-PQ-J56d9qDqZsJlh4PPQaKP6OZz7fkypk24t3fXJD356e39YaVu5fX9apkVmgBzMkCMlM7jVigE065wqUp1IVBhQiI6sNmACrnwjpT60xmQtg0NVo7xZVKF-Th_NcGH2NAV32HpjPhWHGo5gLVVKCaC0yUnemhafH4r6u229XJ_wIZJF0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a numerical algorithm for the solution of the radial Loewner equation</title><source>Access via Wiley Online Library</source><creator>Hotta, Ikkei ; Shimauchi, Hirokazu</creator><creatorcontrib>Hotta, Ikkei ; Shimauchi, Hirokazu</creatorcontrib><description>The Loewner partial differential equation provides a one‐parametric family of conformal maps on the unit disk. The images describe a flow of an expanding simply‐connected domain, called the Loewner flow, on the complex plane. In this paper, we present a numerical algorithm for solving the radial Loewner partial differential equation. The algorithm is applied to visualization of Loewner flows with the performance and precision. From the theoretical point of view, our algorithm is based on a recursive formula for determining coefficients of polynomial approximations. We prove that each coefficient converges to true values with reasonable regularity.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4640</identifier><language>eng</language><subject>conformal mapping ; Loewner differential equation ; polynomial approximation</subject><ispartof>Mathematical methods in the applied sciences, 2018-01, Vol.41 (2), p.714-723</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2920-f4806adf9ee8ef2f5f8f330d8ae5ee0ee5bc6005712cfad964622c33a99f51553</cites><orcidid>0000-0002-9160-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4640$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4640$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hotta, Ikkei</creatorcontrib><creatorcontrib>Shimauchi, Hirokazu</creatorcontrib><title>On a numerical algorithm for the solution of the radial Loewner equation</title><title>Mathematical methods in the applied sciences</title><description>The Loewner partial differential equation provides a one‐parametric family of conformal maps on the unit disk. The images describe a flow of an expanding simply‐connected domain, called the Loewner flow, on the complex plane. In this paper, we present a numerical algorithm for solving the radial Loewner partial differential equation. The algorithm is applied to visualization of Loewner flows with the performance and precision. From the theoretical point of view, our algorithm is based on a recursive formula for determining coefficients of polynomial approximations. We prove that each coefficient converges to true values with reasonable regularity.</description><subject>conformal mapping</subject><subject>Loewner differential equation</subject><subject>polynomial approximation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQgGELgUQoSDyCRxaXs2Mn8VhVQJFSdYE5Ms6ZBiUx2Imqvj1Jy8p0Ot2nG35C7jksOYB47DqzlJmEC5Jw0JpxmWeXJAGeA5OCy2tyE-MXABSci4Rsdj01tB87DI01LTXtpw_NsO-o84EOe6TRt-PQ-J56d9qDqZsJlh4PPQaKP6OZz7fkypk24t3fXJD356e39YaVu5fX9apkVmgBzMkCMlM7jVigE065wqUp1IVBhQiI6sNmACrnwjpT60xmQtg0NVo7xZVKF-Th_NcGH2NAV32HpjPhWHGo5gLVVKCaC0yUnemhafH4r6u229XJ_wIZJF0Q</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Hotta, Ikkei</creator><creator>Shimauchi, Hirokazu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9160-5667</orcidid></search><sort><creationdate>20180130</creationdate><title>On a numerical algorithm for the solution of the radial Loewner equation</title><author>Hotta, Ikkei ; Shimauchi, Hirokazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2920-f4806adf9ee8ef2f5f8f330d8ae5ee0ee5bc6005712cfad964622c33a99f51553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>conformal mapping</topic><topic>Loewner differential equation</topic><topic>polynomial approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hotta, Ikkei</creatorcontrib><creatorcontrib>Shimauchi, Hirokazu</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hotta, Ikkei</au><au>Shimauchi, Hirokazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a numerical algorithm for the solution of the radial Loewner equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-01-30</date><risdate>2018</risdate><volume>41</volume><issue>2</issue><spage>714</spage><epage>723</epage><pages>714-723</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The Loewner partial differential equation provides a one‐parametric family of conformal maps on the unit disk. The images describe a flow of an expanding simply‐connected domain, called the Loewner flow, on the complex plane. In this paper, we present a numerical algorithm for solving the radial Loewner partial differential equation. The algorithm is applied to visualization of Loewner flows with the performance and precision. From the theoretical point of view, our algorithm is based on a recursive formula for determining coefficients of polynomial approximations. We prove that each coefficient converges to true values with reasonable regularity.</abstract><doi>10.1002/mma.4640</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9160-5667</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2018-01, Vol.41 (2), p.714-723 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mma_4640 |
source | Access via Wiley Online Library |
subjects | conformal mapping Loewner differential equation polynomial approximation |
title | On a numerical algorithm for the solution of the radial Loewner equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20numerical%20algorithm%20for%20the%20solution%20of%20the%20radial%20Loewner%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hotta,%20Ikkei&rft.date=2018-01-30&rft.volume=41&rft.issue=2&rft.spage=714&rft.epage=723&rft.pages=714-723&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4640&rft_dat=%3Cwiley_cross%3EMMA4640%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |