The equations of non-homogeneous asymmetric fluids: an iterative approach
We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate o...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2002-10, Vol.25 (15), p.1251-1280 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1280 |
---|---|
container_issue | 15 |
container_start_page | 1251 |
container_title | Mathematical methods in the applied sciences |
container_volume | 25 |
creator | Conca, Carlos Gormaz, Raúl Ortega-Torres, Elva E. Rojas-Medar, Marko A. |
description | We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.331 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_ZKTKR0K5_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</originalsourceid><addsrcrecordid>eNp10E9Lw0AQBfBFFKxV_Aq5iAdJnc1uko23IlpLWwWpCF6W6XbWRvOn7qZqv72RiJ48DQy_9w6PsWMOAw4QnZclDoTgO6zHIctCLtNkl_WApxDKiMt9duD9CwAozqMeG89XFNDbBpu8rnxQ26Cqq3BVl_UzVVRvfIB-W5bUuNwEttjkS38RYBXkDbk2804BrteuRrM6ZHsWC09HP7fPHq6v5pc34fRuNL4cTkMjopSHmVVoASMUSkhaWIOkhAIrszQFq8BIICCeZTG13yVEcQpouIwJE7WQmeiz067XuNp7R1avXV6i22oO-nsB3S6g2wVaedLJNXqDhXVYmdz_cZElPAHVurPOfeQFbf-r07PZsGsNO537hj5_NbpXnaQijfXj7Ug_TeaTe5jEGsQXSoJ4cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The equations of non-homogeneous asymmetric fluids: an iterative approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Conca, Carlos ; Gormaz, Raúl ; Ortega-Torres, Elva E. ; Rojas-Medar, Marko A.</creator><creatorcontrib>Conca, Carlos ; Gormaz, Raúl ; Ortega-Torres, Elva E. ; Rojas-Medar, Marko A.</creatorcontrib><description>We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.331</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>asymmetric fluid ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Galerkin method ; General theory ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use ; strong solutions</subject><ispartof>Mathematical methods in the applied sciences, 2002-10, Vol.25 (15), p.1251-1280</ispartof><rights>Copyright © 2002 John Wiley & Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</citedby><cites>FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13961608$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Conca, Carlos</creatorcontrib><creatorcontrib>Gormaz, Raúl</creatorcontrib><creatorcontrib>Ortega-Torres, Elva E.</creatorcontrib><creatorcontrib>Rojas-Medar, Marko A.</creatorcontrib><title>The equations of non-homogeneous asymmetric fluids: an iterative approach</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley & Sons, Ltd.</description><subject>asymmetric fluid</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin method</subject><subject>General theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>strong solutions</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp10E9Lw0AQBfBFFKxV_Aq5iAdJnc1uko23IlpLWwWpCF6W6XbWRvOn7qZqv72RiJ48DQy_9w6PsWMOAw4QnZclDoTgO6zHIctCLtNkl_WApxDKiMt9duD9CwAozqMeG89XFNDbBpu8rnxQ26Cqq3BVl_UzVVRvfIB-W5bUuNwEttjkS38RYBXkDbk2804BrteuRrM6ZHsWC09HP7fPHq6v5pc34fRuNL4cTkMjopSHmVVoASMUSkhaWIOkhAIrszQFq8BIICCeZTG13yVEcQpouIwJE7WQmeiz067XuNp7R1avXV6i22oO-nsB3S6g2wVaedLJNXqDhXVYmdz_cZElPAHVurPOfeQFbf-r07PZsGsNO537hj5_NbpXnaQijfXj7Ug_TeaTe5jEGsQXSoJ4cA</recordid><startdate>200210</startdate><enddate>200210</enddate><creator>Conca, Carlos</creator><creator>Gormaz, Raúl</creator><creator>Ortega-Torres, Elva E.</creator><creator>Rojas-Medar, Marko A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200210</creationdate><title>The equations of non-homogeneous asymmetric fluids: an iterative approach</title><author>Conca, Carlos ; Gormaz, Raúl ; Ortega-Torres, Elva E. ; Rojas-Medar, Marko A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>asymmetric fluid</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin method</topic><topic>General theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>strong solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conca, Carlos</creatorcontrib><creatorcontrib>Gormaz, Raúl</creatorcontrib><creatorcontrib>Ortega-Torres, Elva E.</creatorcontrib><creatorcontrib>Rojas-Medar, Marko A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conca, Carlos</au><au>Gormaz, Raúl</au><au>Ortega-Torres, Elva E.</au><au>Rojas-Medar, Marko A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The equations of non-homogeneous asymmetric fluids: an iterative approach</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2002-10</date><risdate>2002</risdate><volume>25</volume><issue>15</issue><spage>1251</spage><epage>1280</epage><pages>1251-1280</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.331</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2002-10, Vol.25 (15), p.1251-1280 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mma_331 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | asymmetric fluid Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Galerkin method General theory Mathematical analysis Mathematics Partial differential equations Physics Sciences and techniques of general use strong solutions |
title | The equations of non-homogeneous asymmetric fluids: an iterative approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20equations%20of%20non-homogeneous%20asymmetric%20fluids:%20an%20iterative%20approach&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Conca,%20Carlos&rft.date=2002-10&rft.volume=25&rft.issue=15&rft.spage=1251&rft.epage=1280&rft.pages=1251-1280&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.331&rft_dat=%3Cistex_cross%3Eark_67375_WNG_ZKTKR0K5_0%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |