The equations of non-homogeneous asymmetric fluids: an iterative approach

We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2002-10, Vol.25 (15), p.1251-1280
Hauptverfasser: Conca, Carlos, Gormaz, Raúl, Ortega-Torres, Elva E., Rojas-Medar, Marko A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1280
container_issue 15
container_start_page 1251
container_title Mathematical methods in the applied sciences
container_volume 25
creator Conca, Carlos
Gormaz, Raúl
Ortega-Torres, Elva E.
Rojas-Medar, Marko A.
description We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.331
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_ZKTKR0K5_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</originalsourceid><addsrcrecordid>eNp10E9Lw0AQBfBFFKxV_Aq5iAdJnc1uko23IlpLWwWpCF6W6XbWRvOn7qZqv72RiJ48DQy_9w6PsWMOAw4QnZclDoTgO6zHIctCLtNkl_WApxDKiMt9duD9CwAozqMeG89XFNDbBpu8rnxQ26Cqq3BVl_UzVVRvfIB-W5bUuNwEttjkS38RYBXkDbk2804BrteuRrM6ZHsWC09HP7fPHq6v5pc34fRuNL4cTkMjopSHmVVoASMUSkhaWIOkhAIrszQFq8BIICCeZTG13yVEcQpouIwJE7WQmeiz067XuNp7R1avXV6i22oO-nsB3S6g2wVaedLJNXqDhXVYmdz_cZElPAHVurPOfeQFbf-r07PZsGsNO537hj5_NbpXnaQijfXj7Ug_TeaTe5jEGsQXSoJ4cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The equations of non-homogeneous asymmetric fluids: an iterative approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Conca, Carlos ; Gormaz, Raúl ; Ortega-Torres, Elva E. ; Rojas-Medar, Marko A.</creator><creatorcontrib>Conca, Carlos ; Gormaz, Raúl ; Ortega-Torres, Elva E. ; Rojas-Medar, Marko A.</creatorcontrib><description>We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.331</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>asymmetric fluid ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Galerkin method ; General theory ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use ; strong solutions</subject><ispartof>Mathematical methods in the applied sciences, 2002-10, Vol.25 (15), p.1251-1280</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</citedby><cites>FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13961608$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Conca, Carlos</creatorcontrib><creatorcontrib>Gormaz, Raúl</creatorcontrib><creatorcontrib>Ortega-Torres, Elva E.</creatorcontrib><creatorcontrib>Rojas-Medar, Marko A.</creatorcontrib><title>The equations of non-homogeneous asymmetric fluids: an iterative approach</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>asymmetric fluid</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin method</subject><subject>General theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>strong solutions</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp10E9Lw0AQBfBFFKxV_Aq5iAdJnc1uko23IlpLWwWpCF6W6XbWRvOn7qZqv72RiJ48DQy_9w6PsWMOAw4QnZclDoTgO6zHIctCLtNkl_WApxDKiMt9duD9CwAozqMeG89XFNDbBpu8rnxQ26Cqq3BVl_UzVVRvfIB-W5bUuNwEttjkS38RYBXkDbk2804BrteuRrM6ZHsWC09HP7fPHq6v5pc34fRuNL4cTkMjopSHmVVoASMUSkhaWIOkhAIrszQFq8BIICCeZTG13yVEcQpouIwJE7WQmeiz067XuNp7R1avXV6i22oO-nsB3S6g2wVaedLJNXqDhXVYmdz_cZElPAHVurPOfeQFbf-r07PZsGsNO537hj5_NbpXnaQijfXj7Ug_TeaTe5jEGsQXSoJ4cA</recordid><startdate>200210</startdate><enddate>200210</enddate><creator>Conca, Carlos</creator><creator>Gormaz, Raúl</creator><creator>Ortega-Torres, Elva E.</creator><creator>Rojas-Medar, Marko A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200210</creationdate><title>The equations of non-homogeneous asymmetric fluids: an iterative approach</title><author>Conca, Carlos ; Gormaz, Raúl ; Ortega-Torres, Elva E. ; Rojas-Medar, Marko A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-9f8af0a2a3834ebfcae8380f49770f80c40e0e1995e80fd02570ac145ea68b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>asymmetric fluid</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin method</topic><topic>General theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>strong solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conca, Carlos</creatorcontrib><creatorcontrib>Gormaz, Raúl</creatorcontrib><creatorcontrib>Ortega-Torres, Elva E.</creatorcontrib><creatorcontrib>Rojas-Medar, Marko A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conca, Carlos</au><au>Gormaz, Raúl</au><au>Ortega-Torres, Elva E.</au><au>Rojas-Medar, Marko A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The equations of non-homogeneous asymmetric fluids: an iterative approach</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2002-10</date><risdate>2002</risdate><volume>25</volume><issue>15</issue><spage>1251</spage><epage>1280</epage><pages>1251-1280</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>We study the existence and uniqueness of strong solutions for the equations of non‐homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.331</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2002-10, Vol.25 (15), p.1251-1280
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_331
source Wiley Online Library Journals Frontfile Complete
subjects asymmetric fluid
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Galerkin method
General theory
Mathematical analysis
Mathematics
Partial differential equations
Physics
Sciences and techniques of general use
strong solutions
title The equations of non-homogeneous asymmetric fluids: an iterative approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20equations%20of%20non-homogeneous%20asymmetric%20fluids:%20an%20iterative%20approach&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Conca,%20Carlos&rft.date=2002-10&rft.volume=25&rft.issue=15&rft.spage=1251&rft.epage=1280&rft.pages=1251-1280&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.331&rft_dat=%3Cistex_cross%3Eark_67375_WNG_ZKTKR0K5_0%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true