The Neumann problem, cylindrical outlets and Sobolev spaces
The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2002-07, Vol.25 (10), p.875-894 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 894 |
---|---|
container_issue | 10 |
container_start_page | 875 |
container_title | Mathematical methods in the applied sciences |
container_volume | 25 |
creator | Thäter, Gudrun |
description | The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.317 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2897-f60dd5eea4920bf69dfa6e0a21e3bf0526c7a29b2c8917e0065ce080c521d9803</originalsourceid><addsrcrecordid>eNp1z09LwzAYx_EgCs4pvoVexIN2PknapsGTDp3KNodOPIY0fYLV_iPZ1L17KxU9eXouH348X0IOKYwoADurKj3iVGyRAQUpQxqJZJsMgAoII0ajXbLn_SsApJSyATlfvmAwx3Wl6zpoXZOVWJ0GZlMWde4Ko8ugWa9KXPlA13nw2GRNie-Bb7VBv092rC49HvzcIXm6vlqOb8Lp_eR2fDENDUulCG0CeR4j6kgyyGwic6sTBM0o8sxCzBIjNJMZM6mkAgGS2CCkYGJGc5kCH5Ljfte4xnuHVrWuqLTbKArqu1l1zapr7uRRL1vtu9-t07Up_B_ngvOUpp076d1HUeLmvzk1m130q2GvC7_Cz1-t3ZtKBBexep5P1OThbnoplwu14F8mIXME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Neumann problem, cylindrical outlets and Sobolev spaces</title><source>Wiley Online Library All Journals</source><creator>Thäter, Gudrun</creator><creatorcontrib>Thäter, Gudrun</creatorcontrib><description>The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.317</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2002-07, Vol.25 (10), p.875-894</ispartof><rights>Copyright © 2002 John Wiley & Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2897-f60dd5eea4920bf69dfa6e0a21e3bf0526c7a29b2c8917e0065ce080c521d9803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.317$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.317$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13733818$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thäter, Gudrun</creatorcontrib><title>The Neumann problem, cylindrical outlets and Sobolev spaces</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley & Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1z09LwzAYx_EgCs4pvoVexIN2PknapsGTDp3KNodOPIY0fYLV_iPZ1L17KxU9eXouH348X0IOKYwoADurKj3iVGyRAQUpQxqJZJsMgAoII0ajXbLn_SsApJSyATlfvmAwx3Wl6zpoXZOVWJ0GZlMWde4Ko8ugWa9KXPlA13nw2GRNie-Bb7VBv092rC49HvzcIXm6vlqOb8Lp_eR2fDENDUulCG0CeR4j6kgyyGwic6sTBM0o8sxCzBIjNJMZM6mkAgGS2CCkYGJGc5kCH5Ljfte4xnuHVrWuqLTbKArqu1l1zapr7uRRL1vtu9-t07Up_B_ngvOUpp076d1HUeLmvzk1m130q2GvC7_Cz1-t3ZtKBBexep5P1OThbnoplwu14F8mIXME</recordid><startdate>20020710</startdate><enddate>20020710</enddate><creator>Thäter, Gudrun</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020710</creationdate><title>The Neumann problem, cylindrical outlets and Sobolev spaces</title><author>Thäter, Gudrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2897-f60dd5eea4920bf69dfa6e0a21e3bf0526c7a29b2c8917e0065ce080c521d9803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thäter, Gudrun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thäter, Gudrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Neumann problem, cylindrical outlets and Sobolev spaces</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2002-07-10</date><risdate>2002</risdate><volume>25</volume><issue>10</issue><spage>875</spage><epage>894</epage><pages>875-894</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.317</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2002-07, Vol.25 (10), p.875-894 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mma_317 |
source | Wiley Online Library All Journals |
subjects | Exact sciences and technology Mathematical analysis Mathematics Partial differential equations Sciences and techniques of general use |
title | The Neumann problem, cylindrical outlets and Sobolev spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Neumann%20problem,%20cylindrical%20outlets%20and%20Sobolev%20spaces&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Th%C3%A4ter,%20Gudrun&rft.date=2002-07-10&rft.volume=25&rft.issue=10&rft.spage=875&rft.epage=894&rft.pages=875-894&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.317&rft_dat=%3Cwiley_cross%3EMMA317%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |