The Neumann problem, cylindrical outlets and Sobolev spaces

The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2002-07, Vol.25 (10), p.875-894
1. Verfasser: Thäter, Gudrun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 894
container_issue 10
container_start_page 875
container_title Mathematical methods in the applied sciences
container_volume 25
creator Thäter, Gudrun
description The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.317
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2897-f60dd5eea4920bf69dfa6e0a21e3bf0526c7a29b2c8917e0065ce080c521d9803</originalsourceid><addsrcrecordid>eNp1z09LwzAYx_EgCs4pvoVexIN2PknapsGTDp3KNodOPIY0fYLV_iPZ1L17KxU9eXouH348X0IOKYwoADurKj3iVGyRAQUpQxqJZJsMgAoII0ajXbLn_SsApJSyATlfvmAwx3Wl6zpoXZOVWJ0GZlMWde4Ko8ugWa9KXPlA13nw2GRNie-Bb7VBv092rC49HvzcIXm6vlqOb8Lp_eR2fDENDUulCG0CeR4j6kgyyGwic6sTBM0o8sxCzBIjNJMZM6mkAgGS2CCkYGJGc5kCH5Ljfte4xnuHVrWuqLTbKArqu1l1zapr7uRRL1vtu9-t07Up_B_ngvOUpp076d1HUeLmvzk1m130q2GvC7_Cz1-t3ZtKBBexep5P1OThbnoplwu14F8mIXME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Neumann problem, cylindrical outlets and Sobolev spaces</title><source>Wiley Online Library All Journals</source><creator>Thäter, Gudrun</creator><creatorcontrib>Thäter, Gudrun</creatorcontrib><description>The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.317</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2002-07, Vol.25 (10), p.875-894</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2897-f60dd5eea4920bf69dfa6e0a21e3bf0526c7a29b2c8917e0065ce080c521d9803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.317$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.317$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13733818$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thäter, Gudrun</creatorcontrib><title>The Neumann problem, cylindrical outlets and Sobolev spaces</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1z09LwzAYx_EgCs4pvoVexIN2PknapsGTDp3KNodOPIY0fYLV_iPZ1L17KxU9eXouH348X0IOKYwoADurKj3iVGyRAQUpQxqJZJsMgAoII0ajXbLn_SsApJSyATlfvmAwx3Wl6zpoXZOVWJ0GZlMWde4Ko8ugWa9KXPlA13nw2GRNie-Bb7VBv092rC49HvzcIXm6vlqOb8Lp_eR2fDENDUulCG0CeR4j6kgyyGwic6sTBM0o8sxCzBIjNJMZM6mkAgGS2CCkYGJGc5kCH5Ljfte4xnuHVrWuqLTbKArqu1l1zapr7uRRL1vtu9-t07Up_B_ngvOUpp076d1HUeLmvzk1m130q2GvC7_Cz1-t3ZtKBBexep5P1OThbnoplwu14F8mIXME</recordid><startdate>20020710</startdate><enddate>20020710</enddate><creator>Thäter, Gudrun</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020710</creationdate><title>The Neumann problem, cylindrical outlets and Sobolev spaces</title><author>Thäter, Gudrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2897-f60dd5eea4920bf69dfa6e0a21e3bf0526c7a29b2c8917e0065ce080c521d9803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thäter, Gudrun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thäter, Gudrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Neumann problem, cylindrical outlets and Sobolev spaces</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2002-07-10</date><risdate>2002</risdate><volume>25</volume><issue>10</issue><spage>875</spage><epage>894</epage><pages>875-894</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>The Neumann problem is crucial in mathematical physics. Nevertheless, as far as cylindrical domains are concerned there is still the open question how to construct solutions to data in usual Sobolev spaces since the standard Kondratiev theory does not apply. In this paper that unsatisfactory gap is filled and moreover, data with polynomial asymptotic behaviour are considered. As interesting special case we find solutions with bounded Dirichlet integral. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.317</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2002-07, Vol.25 (10), p.875-894
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_317
source Wiley Online Library All Journals
subjects Exact sciences and technology
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
title The Neumann problem, cylindrical outlets and Sobolev spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Neumann%20problem,%20cylindrical%20outlets%20and%20Sobolev%20spaces&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Th%C3%A4ter,%20Gudrun&rft.date=2002-07-10&rft.volume=25&rft.issue=10&rft.spage=875&rft.epage=894&rft.pages=875-894&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.317&rft_dat=%3Cwiley_cross%3EMMA317%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true