Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity

In this paper, we investigate a time‐dependent family of plane closed Jordan curves evolving in the normal direction with a velocity that is assumed to be a function of the curvature, tangential angle, and position vector of a curve. We follow the direct approach and analyze the system of governing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2012-10, Vol.35 (15), p.1784-1798
Hauptverfasser: Ševčovič, Daniel, Yazaki, Shigetoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1798
container_issue 15
container_start_page 1784
container_title Mathematical methods in the applied sciences
container_volume 35
creator Ševčovič, Daniel
Yazaki, Shigetoshi
description In this paper, we investigate a time‐dependent family of plane closed Jordan curves evolving in the normal direction with a velocity that is assumed to be a function of the curvature, tangential angle, and position vector of a curve. We follow the direct approach and analyze the system of governing PDEs for relevant geometric quantities. We focus on a class of the so‐called curvature adjusted tangential velocities for computation of the curvature driven flow of plane closed curves. Such a curvature adjusted tangential velocity depends on the modulus of the curvature and its curve average. Using the theory of parabolic equations, we prove local existence, uniqueness, and continuation of classical solutions to the system of governing equations. We furthermore analyze geometric flows for which normal velocity may depend on global curve quantities such as the length, enclosed area, or total elastic energy of a curve. We also propose a stable numerical approximation scheme on the basis of the flowing finite volume method. Several computational examples of various nonlocal geometric flows are also presented in this paper. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.2554
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_2554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA2554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3374-1ae71feec065a1c8bbee183d097c9ff303c99b3ce0c90bd017a0a2a69b5ce7b53</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqUg8RN85JJix3n5WAUaQC0ICcTR2jgbSMmL2GnpvyehCIkDp90dfTvSDCHnnM04Y-5lVcHM9X3vgEw4k9LhXhgckgnjIXM8l3vH5MSYNWMs4tydkCpuqra3YIumhpJCndGPHspiVDZIwbSoraFNTqtmZMatLaFGqvtug4ZuC_tG4fsC23fDS7bujcWMWqhfsbbFYLvBstGF3Z2SoxxKg2c_c0qeF9dP8Y2zfEhu4_nS0UKEnsMBQ54jahb4wHWUpog8EhmToZZ5LpjQUqZCI9OSpdmQDRi4EMjU1ximvpiSi72v7hpjOsxV2xUVdDvFmRprUkNNaqxpQJ09ui1K3P3LqdVq_pcvhpCfvzx07yoIReirl_tERUmyEFePdyoWX0-He6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ševčovič, Daniel ; Yazaki, Shigetoshi</creator><creatorcontrib>Ševčovič, Daniel ; Yazaki, Shigetoshi</creatorcontrib><description>In this paper, we investigate a time‐dependent family of plane closed Jordan curves evolving in the normal direction with a velocity that is assumed to be a function of the curvature, tangential angle, and position vector of a curve. We follow the direct approach and analyze the system of governing PDEs for relevant geometric quantities. We focus on a class of the so‐called curvature adjusted tangential velocities for computation of the curvature driven flow of plane closed curves. Such a curvature adjusted tangential velocity depends on the modulus of the curvature and its curve average. Using the theory of parabolic equations, we prove local existence, uniqueness, and continuation of classical solutions to the system of governing equations. We furthermore analyze geometric flows for which normal velocity may depend on global curve quantities such as the length, enclosed area, or total elastic energy of a curve. We also propose a stable numerical approximation scheme on the basis of the flowing finite volume method. Several computational examples of various nonlocal geometric flows are also presented in this paper. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.2554</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>curvature adjusted tangential velocity ; curvature driven flow ; local existence of solutions ; nonlocal geometric flows</subject><ispartof>Mathematical methods in the applied sciences, 2012-10, Vol.35 (15), p.1784-1798</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3374-1ae71feec065a1c8bbee183d097c9ff303c99b3ce0c90bd017a0a2a69b5ce7b53</citedby><cites>FETCH-LOGICAL-c3374-1ae71feec065a1c8bbee183d097c9ff303c99b3ce0c90bd017a0a2a69b5ce7b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.2554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.2554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Ševčovič, Daniel</creatorcontrib><creatorcontrib>Yazaki, Shigetoshi</creatorcontrib><title>Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this paper, we investigate a time‐dependent family of plane closed Jordan curves evolving in the normal direction with a velocity that is assumed to be a function of the curvature, tangential angle, and position vector of a curve. We follow the direct approach and analyze the system of governing PDEs for relevant geometric quantities. We focus on a class of the so‐called curvature adjusted tangential velocities for computation of the curvature driven flow of plane closed curves. Such a curvature adjusted tangential velocity depends on the modulus of the curvature and its curve average. Using the theory of parabolic equations, we prove local existence, uniqueness, and continuation of classical solutions to the system of governing equations. We furthermore analyze geometric flows for which normal velocity may depend on global curve quantities such as the length, enclosed area, or total elastic energy of a curve. We also propose a stable numerical approximation scheme on the basis of the flowing finite volume method. Several computational examples of various nonlocal geometric flows are also presented in this paper. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>curvature adjusted tangential velocity</subject><subject>curvature driven flow</subject><subject>local existence of solutions</subject><subject>nonlocal geometric flows</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqUg8RN85JJix3n5WAUaQC0ICcTR2jgbSMmL2GnpvyehCIkDp90dfTvSDCHnnM04Y-5lVcHM9X3vgEw4k9LhXhgckgnjIXM8l3vH5MSYNWMs4tydkCpuqra3YIumhpJCndGPHspiVDZIwbSoraFNTqtmZMatLaFGqvtug4ZuC_tG4fsC23fDS7bujcWMWqhfsbbFYLvBstGF3Z2SoxxKg2c_c0qeF9dP8Y2zfEhu4_nS0UKEnsMBQ54jahb4wHWUpog8EhmToZZ5LpjQUqZCI9OSpdmQDRi4EMjU1ximvpiSi72v7hpjOsxV2xUVdDvFmRprUkNNaqxpQJ09ui1K3P3LqdVq_pcvhpCfvzx07yoIReirl_tERUmyEFePdyoWX0-He6E</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Ševčovič, Daniel</creator><creator>Yazaki, Shigetoshi</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201210</creationdate><title>Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity</title><author>Ševčovič, Daniel ; Yazaki, Shigetoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3374-1ae71feec065a1c8bbee183d097c9ff303c99b3ce0c90bd017a0a2a69b5ce7b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>curvature adjusted tangential velocity</topic><topic>curvature driven flow</topic><topic>local existence of solutions</topic><topic>nonlocal geometric flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ševčovič, Daniel</creatorcontrib><creatorcontrib>Yazaki, Shigetoshi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ševčovič, Daniel</au><au>Yazaki, Shigetoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2012-10</date><risdate>2012</risdate><volume>35</volume><issue>15</issue><spage>1784</spage><epage>1798</epage><pages>1784-1798</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we investigate a time‐dependent family of plane closed Jordan curves evolving in the normal direction with a velocity that is assumed to be a function of the curvature, tangential angle, and position vector of a curve. We follow the direct approach and analyze the system of governing PDEs for relevant geometric quantities. We focus on a class of the so‐called curvature adjusted tangential velocities for computation of the curvature driven flow of plane closed curves. Such a curvature adjusted tangential velocity depends on the modulus of the curvature and its curve average. Using the theory of parabolic equations, we prove local existence, uniqueness, and continuation of classical solutions to the system of governing equations. We furthermore analyze geometric flows for which normal velocity may depend on global curve quantities such as the length, enclosed area, or total elastic energy of a curve. We also propose a stable numerical approximation scheme on the basis of the flowing finite volume method. Several computational examples of various nonlocal geometric flows are also presented in this paper. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.2554</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2012-10, Vol.35 (15), p.1784-1798
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_2554
source Wiley Online Library Journals Frontfile Complete
subjects curvature adjusted tangential velocity
curvature driven flow
local existence of solutions
nonlocal geometric flows
title Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20and%20qualitative%20aspects%20of%20motion%20of%20plane%20curves%20with%20a%20curvature%20adjusted%20tangential%20velocity&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=%C5%A0ev%C4%8Dovi%C4%8D,%20Daniel&rft.date=2012-10&rft.volume=35&rft.issue=15&rft.spage=1784&rft.epage=1798&rft.pages=1784-1798&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.2554&rft_dat=%3Cwiley_cross%3EMMA2554%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true