Global Lipschitz stability for an inverse coefficient problem for a mean field game system
For an inverse coefficient problem of determining a state‐varying factor in the corresponding Hamiltonian for a mean field game system, we prove the global Lipschitz stability by spatial data of one component and interior data in an arbitrarily chosen subdomain over a time interval. The proof is bas...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Mathematical methods in the applied sciences |
container_volume | |
creator | Imanuvilov, Oleg Yamamoto, Masahiro |
description | For an inverse coefficient problem of determining a state‐varying factor in the corresponding Hamiltonian for a mean field game system, we prove the global Lipschitz stability by spatial data of one component and interior data in an arbitrarily chosen subdomain over a time interval. The proof is based on Carleman estimates with different norms. |
doi_str_mv | 10.1002/mma.10519 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_10519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mma_10519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-c42b49c3ea80c2083c5213060a2c3deb9c4675862610b05388e545dec0f73a1d3</originalsourceid><addsrcrecordid>eNotkLtOxDAQRS0EEmGh4A_cUgRm_MijRCvYRYpEAw1N5DhjMIqTyI6Qlq8nsFT3FkenOIxdI9wigLgLwaxHY33CMoS6zlGVxSnLAEvIlUB1zi5S-gSAClFk7G03TJ0ZeOPnZD_88s3TYjo_-OXA3RS5Gbkfvygm4nYi57z1NC58jlM3UDgiPNCKOU9Dz99NIJ4OaaFwyc6cGRJd_e-GvT4-vGz3efO8e9reN7lFrZbcKtGp2koyFVgBlbRaoIQCjLCyp662qih1VYgCoQMtq4q00j1ZcKU02MsNuzl6bZxSiuTaOfpg4qFFaH-jtGuU9i-K_AEAklT9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global Lipschitz stability for an inverse coefficient problem for a mean field game system</title><source>Wiley Online Library All Journals</source><creator>Imanuvilov, Oleg ; Yamamoto, Masahiro</creator><creatorcontrib>Imanuvilov, Oleg ; Yamamoto, Masahiro</creatorcontrib><description>For an inverse coefficient problem of determining a state‐varying factor in the corresponding Hamiltonian for a mean field game system, we prove the global Lipschitz stability by spatial data of one component and interior data in an arbitrarily chosen subdomain over a time interval. The proof is based on Carleman estimates with different norms.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10519</identifier><language>eng</language><ispartof>Mathematical methods in the applied sciences, 2024-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-c42b49c3ea80c2083c5213060a2c3deb9c4675862610b05388e545dec0f73a1d3</cites><orcidid>0000-0002-8621-6667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Imanuvilov, Oleg</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><title>Global Lipschitz stability for an inverse coefficient problem for a mean field game system</title><title>Mathematical methods in the applied sciences</title><description>For an inverse coefficient problem of determining a state‐varying factor in the corresponding Hamiltonian for a mean field game system, we prove the global Lipschitz stability by spatial data of one component and interior data in an arbitrarily chosen subdomain over a time interval. The proof is based on Carleman estimates with different norms.</description><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkLtOxDAQRS0EEmGh4A_cUgRm_MijRCvYRYpEAw1N5DhjMIqTyI6Qlq8nsFT3FkenOIxdI9wigLgLwaxHY33CMoS6zlGVxSnLAEvIlUB1zi5S-gSAClFk7G03TJ0ZeOPnZD_88s3TYjo_-OXA3RS5Gbkfvygm4nYi57z1NC58jlM3UDgiPNCKOU9Dz99NIJ4OaaFwyc6cGRJd_e-GvT4-vGz3efO8e9reN7lFrZbcKtGp2koyFVgBlbRaoIQCjLCyp662qih1VYgCoQMtq4q00j1ZcKU02MsNuzl6bZxSiuTaOfpg4qFFaH-jtGuU9i-K_AEAklT9</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Imanuvilov, Oleg</creator><creator>Yamamoto, Masahiro</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8621-6667</orcidid></search><sort><creationdate>20241015</creationdate><title>Global Lipschitz stability for an inverse coefficient problem for a mean field game system</title><author>Imanuvilov, Oleg ; Yamamoto, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-c42b49c3ea80c2083c5213060a2c3deb9c4675862610b05388e545dec0f73a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imanuvilov, Oleg</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imanuvilov, Oleg</au><au>Yamamoto, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Lipschitz stability for an inverse coefficient problem for a mean field game system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-10-15</date><risdate>2024</risdate><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>For an inverse coefficient problem of determining a state‐varying factor in the corresponding Hamiltonian for a mean field game system, we prove the global Lipschitz stability by spatial data of one component and interior data in an arbitrarily chosen subdomain over a time interval. The proof is based on Carleman estimates with different norms.</abstract><doi>10.1002/mma.10519</doi><orcidid>https://orcid.org/0000-0002-8621-6667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2024-10 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mma_10519 |
source | Wiley Online Library All Journals |
title | Global Lipschitz stability for an inverse coefficient problem for a mean field game system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Lipschitz%20stability%20for%20an%20inverse%20coefficient%20problem%20for%20a%20mean%20field%20game%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Imanuvilov,%20Oleg&rft.date=2024-10-15&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10519&rft_dat=%3Ccrossref%3E10_1002_mma_10519%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |