Application of Markov chains to copolymerizations

Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 1995-07, Vol.4 (4), p.773-800
Hauptverfasser: Hungenberg, Klaus-Dieter, Wittmer, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 800
container_issue 4
container_start_page 773
container_title Macromolecular theory and simulations
container_volume 4
creator Hungenberg, Klaus-Dieter
Wittmer, Paul
description Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly.
doi_str_mv 10.1002/mats.1995.040040412
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mats_1995_040040412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_WJDFM0DV_N</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</originalsourceid><addsrcrecordid>eNqNkE9Lw0AQxRdRsFY_gZccvKbu7L90L0KptiptPVjtcdlMNriaNiEb1PrpTY0Uj8IwM4f3fsMbQs6BDoBSdrm2TRiA1nJABW1LADsgPZAMYq5BH7Y7ZSwGLsQxOQnhlVKqdcJ6BEZVVXi0jS83UZlHc1u_le8Rvli_CVFTRlhWZbFdu9p__YjCKTnKbRHc2e_sk6fJzXJ8G88epnfj0SxGngCLc6QJptapNM9wyJVNHRegh8ppdEK2HVg2RAABPE1TxbR1EmWWCeUUouR9wjsu1mUItctNVfu1rbcGqNmlNrvUZpfa7FO3rovOVdmAtshru0Ef9lYuE8UBWtlVJ_vwhdv-h2zmo-Xj3ztxB_ChcZ97QPs9oxKeSLNaTM3q_noyp9fPZsG_Ad9gerY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Markov chains to copolymerizations</title><source>Access via Wiley Online Library</source><creator>Hungenberg, Klaus-Dieter ; Wittmer, Paul</creator><creatorcontrib>Hungenberg, Klaus-Dieter ; Wittmer, Paul</creatorcontrib><description>Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.1995.040040412</identifier><language>eng</language><publisher>Zug: Hüthig &amp; Wepf Verlag</publisher><subject>Applied sciences ; Copolymerization ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Macromolecular theory and simulations, 1995-07, Vol.4 (4), p.773-800</ispartof><rights>1995 Hüthig &amp; Wepf Verlag, Zug</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</citedby><cites>FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.1995.040040412$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.1995.040040412$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3576311$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hungenberg, Klaus-Dieter</creatorcontrib><creatorcontrib>Wittmer, Paul</creatorcontrib><title>Application of Markov chains to copolymerizations</title><title>Macromolecular theory and simulations</title><addtitle>Macromol. Theory Simul</addtitle><description>Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly.</description><subject>Applied sciences</subject><subject>Copolymerization</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AQxRdRsFY_gZccvKbu7L90L0KptiptPVjtcdlMNriaNiEb1PrpTY0Uj8IwM4f3fsMbQs6BDoBSdrm2TRiA1nJABW1LADsgPZAMYq5BH7Y7ZSwGLsQxOQnhlVKqdcJ6BEZVVXi0jS83UZlHc1u_le8Rvli_CVFTRlhWZbFdu9p__YjCKTnKbRHc2e_sk6fJzXJ8G88epnfj0SxGngCLc6QJptapNM9wyJVNHRegh8ppdEK2HVg2RAABPE1TxbR1EmWWCeUUouR9wjsu1mUItctNVfu1rbcGqNmlNrvUZpfa7FO3rovOVdmAtshru0Ef9lYuE8UBWtlVJ_vwhdv-h2zmo-Xj3ztxB_ChcZ97QPs9oxKeSLNaTM3q_noyp9fPZsG_Ad9gerY</recordid><startdate>199507</startdate><enddate>199507</enddate><creator>Hungenberg, Klaus-Dieter</creator><creator>Wittmer, Paul</creator><general>Hüthig &amp; Wepf Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199507</creationdate><title>Application of Markov chains to copolymerizations</title><author>Hungenberg, Klaus-Dieter ; Wittmer, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Copolymerization</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hungenberg, Klaus-Dieter</creatorcontrib><creatorcontrib>Wittmer, Paul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hungenberg, Klaus-Dieter</au><au>Wittmer, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Markov chains to copolymerizations</atitle><jtitle>Macromolecular theory and simulations</jtitle><addtitle>Macromol. Theory Simul</addtitle><date>1995-07</date><risdate>1995</risdate><volume>4</volume><issue>4</issue><spage>773</spage><epage>800</epage><pages>773-800</pages><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly.</abstract><cop>Zug</cop><pub>Hüthig &amp; Wepf Verlag</pub><doi>10.1002/mats.1995.040040412</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 1995-07, Vol.4 (4), p.773-800
issn 1022-1344
1521-3919
language eng
recordid cdi_crossref_primary_10_1002_mats_1995_040040412
source Access via Wiley Online Library
subjects Applied sciences
Copolymerization
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Preparation, kinetics, thermodynamics, mechanism and catalysts
title Application of Markov chains to copolymerizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Markov%20chains%20to%20copolymerizations&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Hungenberg,%20Klaus-Dieter&rft.date=1995-07&rft.volume=4&rft.issue=4&rft.spage=773&rft.epage=800&rft.pages=773-800&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.1995.040040412&rft_dat=%3Cistex_cross%3Eark_67375_WNG_WJDFM0DV_N%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true