Application of Markov chains to copolymerizations
Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according...
Gespeichert in:
Veröffentlicht in: | Macromolecular theory and simulations 1995-07, Vol.4 (4), p.773-800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 4 |
container_start_page | 773 |
container_title | Macromolecular theory and simulations |
container_volume | 4 |
creator | Hungenberg, Klaus-Dieter Wittmer, Paul |
description | Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly. |
doi_str_mv | 10.1002/mats.1995.040040412 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mats_1995_040040412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_WJDFM0DV_N</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</originalsourceid><addsrcrecordid>eNqNkE9Lw0AQxRdRsFY_gZccvKbu7L90L0KptiptPVjtcdlMNriaNiEb1PrpTY0Uj8IwM4f3fsMbQs6BDoBSdrm2TRiA1nJABW1LADsgPZAMYq5BH7Y7ZSwGLsQxOQnhlVKqdcJ6BEZVVXi0jS83UZlHc1u_le8Rvli_CVFTRlhWZbFdu9p__YjCKTnKbRHc2e_sk6fJzXJ8G88epnfj0SxGngCLc6QJptapNM9wyJVNHRegh8ppdEK2HVg2RAABPE1TxbR1EmWWCeUUouR9wjsu1mUItctNVfu1rbcGqNmlNrvUZpfa7FO3rovOVdmAtshru0Ef9lYuE8UBWtlVJ_vwhdv-h2zmo-Xj3ztxB_ChcZ97QPs9oxKeSLNaTM3q_noyp9fPZsG_Ad9gerY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Markov chains to copolymerizations</title><source>Access via Wiley Online Library</source><creator>Hungenberg, Klaus-Dieter ; Wittmer, Paul</creator><creatorcontrib>Hungenberg, Klaus-Dieter ; Wittmer, Paul</creatorcontrib><description>Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.1995.040040412</identifier><language>eng</language><publisher>Zug: Hüthig & Wepf Verlag</publisher><subject>Applied sciences ; Copolymerization ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Macromolecular theory and simulations, 1995-07, Vol.4 (4), p.773-800</ispartof><rights>1995 Hüthig & Wepf Verlag, Zug</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</citedby><cites>FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.1995.040040412$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.1995.040040412$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3576311$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hungenberg, Klaus-Dieter</creatorcontrib><creatorcontrib>Wittmer, Paul</creatorcontrib><title>Application of Markov chains to copolymerizations</title><title>Macromolecular theory and simulations</title><addtitle>Macromol. Theory Simul</addtitle><description>Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly.</description><subject>Applied sciences</subject><subject>Copolymerization</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AQxRdRsFY_gZccvKbu7L90L0KptiptPVjtcdlMNriaNiEb1PrpTY0Uj8IwM4f3fsMbQs6BDoBSdrm2TRiA1nJABW1LADsgPZAMYq5BH7Y7ZSwGLsQxOQnhlVKqdcJ6BEZVVXi0jS83UZlHc1u_le8Rvli_CVFTRlhWZbFdu9p__YjCKTnKbRHc2e_sk6fJzXJ8G88epnfj0SxGngCLc6QJptapNM9wyJVNHRegh8ppdEK2HVg2RAABPE1TxbR1EmWWCeUUouR9wjsu1mUItctNVfu1rbcGqNmlNrvUZpfa7FO3rovOVdmAtshru0Ef9lYuE8UBWtlVJ_vwhdv-h2zmo-Xj3ztxB_ChcZ97QPs9oxKeSLNaTM3q_noyp9fPZsG_Ad9gerY</recordid><startdate>199507</startdate><enddate>199507</enddate><creator>Hungenberg, Klaus-Dieter</creator><creator>Wittmer, Paul</creator><general>Hüthig & Wepf Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199507</creationdate><title>Application of Markov chains to copolymerizations</title><author>Hungenberg, Klaus-Dieter ; Wittmer, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3712-fc07cbae6bfdc836abe341986e9ce45e9c12d8c11413bbb629ae5c5dd46e6cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Copolymerization</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hungenberg, Klaus-Dieter</creatorcontrib><creatorcontrib>Wittmer, Paul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hungenberg, Klaus-Dieter</au><au>Wittmer, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Markov chains to copolymerizations</atitle><jtitle>Macromolecular theory and simulations</jtitle><addtitle>Macromol. Theory Simul</addtitle><date>1995-07</date><risdate>1995</risdate><volume>4</volume><issue>4</issue><spage>773</spage><epage>800</epage><pages>773-800</pages><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>Binary copolymerization is treated as a Markov chain process to calculate the distribution of the degree of polymerization for three different copolymerization models. The results for the terminal model according to Melville and Walling show considerable differences compared to the models according to Russo and Munari and Inagaki and Fukuda. Although these latter models start from different assumptions, one considering a penultimate effect in termination reactions, the other one a penultimate effect in propagation reactions, the results for these two models differ only slightly.</abstract><cop>Zug</cop><pub>Hüthig & Wepf Verlag</pub><doi>10.1002/mats.1995.040040412</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1344 |
ispartof | Macromolecular theory and simulations, 1995-07, Vol.4 (4), p.773-800 |
issn | 1022-1344 1521-3919 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mats_1995_040040412 |
source | Access via Wiley Online Library |
subjects | Applied sciences Copolymerization Exact sciences and technology Organic polymers Physicochemistry of polymers Preparation, kinetics, thermodynamics, mechanism and catalysts |
title | Application of Markov chains to copolymerizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Markov%20chains%20to%20copolymerizations&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Hungenberg,%20Klaus-Dieter&rft.date=1995-07&rft.volume=4&rft.issue=4&rft.spage=773&rft.epage=800&rft.pages=773-800&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.1995.040040412&rft_dat=%3Cistex_cross%3Eark_67375_WNG_WJDFM0DV_N%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |