On a wave equation with supercritical interior and boundary sources and damping terms
This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, i...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2011-11, Vol.284 (16), p.2032-2064 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2064 |
---|---|
container_issue | 16 |
container_start_page | 2032 |
container_title | Mathematische Nachrichten |
container_volume | 284 |
creator | Bociu, Lorena Rammaha, Mohammad Toundykov, Daniel |
description | This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy. |
doi_str_mv | 10.1002/mana.200910182 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_200910182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MANA200910182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</originalsourceid><addsrcrecordid>eNqFkM9PwjAUgBujiYhePfcfGPbHuq1HJAomCAchcmseXadV1s12E_nvHWKIN08vefm-l5cPoWtKBpQQdlOCgwEjRFJCM3aCelQwFrGEJqeo1wEiElm8OkcXIbyRDpNp0kPLucOAt_BpsPloobGVw1vbvOLQ1sZrbxurYYOta4y3lcfgcryuWpeD3-FQtV6b8LPMoayte8EdV4ZLdFbAJpir39lHy_u7xWgSTefjh9FwGmnOUhblnALNQBiZEBNLiBlfc6ApEKopzwiHFDKQmgljclNQSOJiTUVWQB4zEAXvo8HhrvZVCN4Uqva27F5TlKh9FLWPoo5ROkEehK3dmN0_tHoczoZ_3ejg2tCYr6ML_l0lKU-Fep6N1UpOFoTdPinBvwE83Xbl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a wave equation with supercritical interior and boundary sources and damping terms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bociu, Lorena ; Rammaha, Mohammad ; Toundykov, Daniel</creator><creatorcontrib>Bociu, Lorena ; Rammaha, Mohammad ; Toundykov, Daniel</creatorcontrib><description>This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.200910182</identifier><language>eng</language><publisher>Germany: WILEY-VCH Verlag</publisher><subject>35A01 ; 35B35 ; blow up ; boundary source ; energy decay ; global existence ; interior source ; MSC Primary: 35L05 ; Nehari manifold ; nonlinear damping ; potential well ; Secondary: 35L71 ; supercritical source ; Wave equation</subject><ispartof>Mathematische Nachrichten, 2011-11, Vol.284 (16), p.2032-2064</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</citedby><cites>FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.200910182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.200910182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Bociu, Lorena</creatorcontrib><creatorcontrib>Rammaha, Mohammad</creatorcontrib><creatorcontrib>Toundykov, Daniel</creatorcontrib><title>On a wave equation with supercritical interior and boundary sources and damping terms</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.</description><subject>35A01</subject><subject>35B35</subject><subject>blow up</subject><subject>boundary source</subject><subject>energy decay</subject><subject>global existence</subject><subject>interior source</subject><subject>MSC Primary: 35L05</subject><subject>Nehari manifold</subject><subject>nonlinear damping</subject><subject>potential well</subject><subject>Secondary: 35L71</subject><subject>supercritical source</subject><subject>Wave equation</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUgBujiYhePfcfGPbHuq1HJAomCAchcmseXadV1s12E_nvHWKIN08vefm-l5cPoWtKBpQQdlOCgwEjRFJCM3aCelQwFrGEJqeo1wEiElm8OkcXIbyRDpNp0kPLucOAt_BpsPloobGVw1vbvOLQ1sZrbxurYYOta4y3lcfgcryuWpeD3-FQtV6b8LPMoayte8EdV4ZLdFbAJpir39lHy_u7xWgSTefjh9FwGmnOUhblnALNQBiZEBNLiBlfc6ApEKopzwiHFDKQmgljclNQSOJiTUVWQB4zEAXvo8HhrvZVCN4Uqva27F5TlKh9FLWPoo5ROkEehK3dmN0_tHoczoZ_3ejg2tCYr6ML_l0lKU-Fep6N1UpOFoTdPinBvwE83Xbl</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Bociu, Lorena</creator><creator>Rammaha, Mohammad</creator><creator>Toundykov, Daniel</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201111</creationdate><title>On a wave equation with supercritical interior and boundary sources and damping terms</title><author>Bociu, Lorena ; Rammaha, Mohammad ; Toundykov, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>35A01</topic><topic>35B35</topic><topic>blow up</topic><topic>boundary source</topic><topic>energy decay</topic><topic>global existence</topic><topic>interior source</topic><topic>MSC Primary: 35L05</topic><topic>Nehari manifold</topic><topic>nonlinear damping</topic><topic>potential well</topic><topic>Secondary: 35L71</topic><topic>supercritical source</topic><topic>Wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bociu, Lorena</creatorcontrib><creatorcontrib>Rammaha, Mohammad</creatorcontrib><creatorcontrib>Toundykov, Daniel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bociu, Lorena</au><au>Rammaha, Mohammad</au><au>Toundykov, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a wave equation with supercritical interior and boundary sources and damping terms</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2011-11</date><risdate>2011</risdate><volume>284</volume><issue>16</issue><spage>2032</spage><epage>2064</epage><pages>2032-2064</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.</abstract><cop>Germany</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.200910182</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2011-11, Vol.284 (16), p.2032-2064 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mana_200910182 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 35A01 35B35 blow up boundary source energy decay global existence interior source MSC Primary: 35L05 Nehari manifold nonlinear damping potential well Secondary: 35L71 supercritical source Wave equation |
title | On a wave equation with supercritical interior and boundary sources and damping terms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20wave%20equation%20with%20supercritical%20interior%20and%20boundary%20sources%20and%20damping%20terms&rft.jtitle=Mathematische%20Nachrichten&rft.au=Bociu,%20Lorena&rft.date=2011-11&rft.volume=284&rft.issue=16&rft.spage=2032&rft.epage=2064&rft.pages=2032-2064&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.200910182&rft_dat=%3Cwiley_cross%3EMANA200910182%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |