On a wave equation with supercritical interior and boundary sources and damping terms

This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2011-11, Vol.284 (16), p.2032-2064
Hauptverfasser: Bociu, Lorena, Rammaha, Mohammad, Toundykov, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2064
container_issue 16
container_start_page 2032
container_title Mathematische Nachrichten
container_volume 284
creator Bociu, Lorena
Rammaha, Mohammad
Toundykov, Daniel
description This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.
doi_str_mv 10.1002/mana.200910182
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_200910182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MANA200910182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</originalsourceid><addsrcrecordid>eNqFkM9PwjAUgBujiYhePfcfGPbHuq1HJAomCAchcmseXadV1s12E_nvHWKIN08vefm-l5cPoWtKBpQQdlOCgwEjRFJCM3aCelQwFrGEJqeo1wEiElm8OkcXIbyRDpNp0kPLucOAt_BpsPloobGVw1vbvOLQ1sZrbxurYYOta4y3lcfgcryuWpeD3-FQtV6b8LPMoayte8EdV4ZLdFbAJpir39lHy_u7xWgSTefjh9FwGmnOUhblnALNQBiZEBNLiBlfc6ApEKopzwiHFDKQmgljclNQSOJiTUVWQB4zEAXvo8HhrvZVCN4Uqva27F5TlKh9FLWPoo5ROkEehK3dmN0_tHoczoZ_3ejg2tCYr6ML_l0lKU-Fep6N1UpOFoTdPinBvwE83Xbl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a wave equation with supercritical interior and boundary sources and damping terms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bociu, Lorena ; Rammaha, Mohammad ; Toundykov, Daniel</creator><creatorcontrib>Bociu, Lorena ; Rammaha, Mohammad ; Toundykov, Daniel</creatorcontrib><description>This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.200910182</identifier><language>eng</language><publisher>Germany: WILEY-VCH Verlag</publisher><subject>35A01 ; 35B35 ; blow up ; boundary source ; energy decay ; global existence ; interior source ; MSC Primary: 35L05 ; Nehari manifold ; nonlinear damping ; potential well ; Secondary: 35L71 ; supercritical source ; Wave equation</subject><ispartof>Mathematische Nachrichten, 2011-11, Vol.284 (16), p.2032-2064</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</citedby><cites>FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.200910182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.200910182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Bociu, Lorena</creatorcontrib><creatorcontrib>Rammaha, Mohammad</creatorcontrib><creatorcontrib>Toundykov, Daniel</creatorcontrib><title>On a wave equation with supercritical interior and boundary sources and damping terms</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.</description><subject>35A01</subject><subject>35B35</subject><subject>blow up</subject><subject>boundary source</subject><subject>energy decay</subject><subject>global existence</subject><subject>interior source</subject><subject>MSC Primary: 35L05</subject><subject>Nehari manifold</subject><subject>nonlinear damping</subject><subject>potential well</subject><subject>Secondary: 35L71</subject><subject>supercritical source</subject><subject>Wave equation</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUgBujiYhePfcfGPbHuq1HJAomCAchcmseXadV1s12E_nvHWKIN08vefm-l5cPoWtKBpQQdlOCgwEjRFJCM3aCelQwFrGEJqeo1wEiElm8OkcXIbyRDpNp0kPLucOAt_BpsPloobGVw1vbvOLQ1sZrbxurYYOta4y3lcfgcryuWpeD3-FQtV6b8LPMoayte8EdV4ZLdFbAJpir39lHy_u7xWgSTefjh9FwGmnOUhblnALNQBiZEBNLiBlfc6ApEKopzwiHFDKQmgljclNQSOJiTUVWQB4zEAXvo8HhrvZVCN4Uqva27F5TlKh9FLWPoo5ROkEehK3dmN0_tHoczoZ_3ejg2tCYr6ML_l0lKU-Fep6N1UpOFoTdPinBvwE83Xbl</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Bociu, Lorena</creator><creator>Rammaha, Mohammad</creator><creator>Toundykov, Daniel</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201111</creationdate><title>On a wave equation with supercritical interior and boundary sources and damping terms</title><author>Bociu, Lorena ; Rammaha, Mohammad ; Toundykov, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-d31a18a5e960e49a423b3a17a01c13803a7a8a9c25eedef1a64fb158fad42a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>35A01</topic><topic>35B35</topic><topic>blow up</topic><topic>boundary source</topic><topic>energy decay</topic><topic>global existence</topic><topic>interior source</topic><topic>MSC Primary: 35L05</topic><topic>Nehari manifold</topic><topic>nonlinear damping</topic><topic>potential well</topic><topic>Secondary: 35L71</topic><topic>supercritical source</topic><topic>Wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bociu, Lorena</creatorcontrib><creatorcontrib>Rammaha, Mohammad</creatorcontrib><creatorcontrib>Toundykov, Daniel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bociu, Lorena</au><au>Rammaha, Mohammad</au><au>Toundykov, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a wave equation with supercritical interior and boundary sources and damping terms</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2011-11</date><risdate>2011</risdate><volume>284</volume><issue>16</issue><spage>2032</spage><epage>2064</epage><pages>2032-2064</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(∂Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(∂Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.</abstract><cop>Germany</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.200910182</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2011-11, Vol.284 (16), p.2032-2064
issn 0025-584X
1522-2616
language eng
recordid cdi_crossref_primary_10_1002_mana_200910182
source Wiley Online Library Journals Frontfile Complete
subjects 35A01
35B35
blow up
boundary source
energy decay
global existence
interior source
MSC Primary: 35L05
Nehari manifold
nonlinear damping
potential well
Secondary: 35L71
supercritical source
Wave equation
title On a wave equation with supercritical interior and boundary sources and damping terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20wave%20equation%20with%20supercritical%20interior%20and%20boundary%20sources%20and%20damping%20terms&rft.jtitle=Mathematische%20Nachrichten&rft.au=Bociu,%20Lorena&rft.date=2011-11&rft.volume=284&rft.issue=16&rft.spage=2032&rft.epage=2064&rft.pages=2032-2064&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.200910182&rft_dat=%3Cwiley_cross%3EMANA200910182%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true