Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems

This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2011-04, Vol.284 (5-6), p.764-780
Hauptverfasser: Qi, Jiangang, Wu, Hongyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 780
container_issue 5-6
container_start_page 764
container_title Mathematische Nachrichten
container_volume 284
creator Qi, Jiangang
Wu, Hongyou
description This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
doi_str_mv 10.1002/mana.200910006
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_200910006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MANA200910006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXz_kBbs0mu9nusVRtlbZetBZBwmw-NLqbLUlA--_dUqnePA3v8DwD8yJ0npJBSgi9bMDBgBJSdonwA9RLc0oTylN-iHodkCf5MFsdo5MQ3juiLAveQy8z29iI16118QKH6Fv3iuvfHQan8JX1Vr7VOmLZOmWjbV3ApvV4Co2tY-ssOKysMdprFy3UOGxC1E04RUcG6qDPfmYfPd5cP4ynyex-cjsezRLJaMETqDSjjGSsKmk-5FDoAlJDU8W4UlICZbnRhCupeEUrVRgtFc0BlIQhLzPK-miwuyt9G4LXRqy9bcBvRErEthyxLUfsy-mEcid82lpv_qHFfLQY_XWTnWu7H7_2LvgPwQtW5OJpMRHT1fN8mS1Lcce-AYCfeyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</title><source>Wiley-Blackwell Journals</source><creator>Qi, Jiangang ; Wu, Hongyou</creator><creatorcontrib>Qi, Jiangang ; Wu, Hongyou</creatorcontrib><description>This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.200910006</identifier><language>eng</language><publisher>Germany: WILEY-VCH Verlag</publisher><subject>34L40 ; 47B25 ; Dirichlet condition ; Friedrichs extension ; Hamiltonian differential system ; limit point condition ; MSC Primary: 34L05 ; Schrödinger operator ; Secondary: 34B20 ; singular potential ; strong limit point condition</subject><ispartof>Mathematische Nachrichten, 2011-04, Vol.284 (5-6), p.764-780</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</citedby><cites>FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.200910006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.200910006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Qi, Jiangang</creatorcontrib><creatorcontrib>Wu, Hongyou</creatorcontrib><title>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</description><subject>34L40</subject><subject>47B25</subject><subject>Dirichlet condition</subject><subject>Friedrichs extension</subject><subject>Hamiltonian differential system</subject><subject>limit point condition</subject><subject>MSC Primary: 34L05</subject><subject>Schrödinger operator</subject><subject>Secondary: 34B20</subject><subject>singular potential</subject><subject>strong limit point condition</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXz_kBbs0mu9nusVRtlbZetBZBwmw-NLqbLUlA--_dUqnePA3v8DwD8yJ0npJBSgi9bMDBgBJSdonwA9RLc0oTylN-iHodkCf5MFsdo5MQ3juiLAveQy8z29iI16118QKH6Fv3iuvfHQan8JX1Vr7VOmLZOmWjbV3ApvV4Co2tY-ssOKysMdprFy3UOGxC1E04RUcG6qDPfmYfPd5cP4ynyex-cjsezRLJaMETqDSjjGSsKmk-5FDoAlJDU8W4UlICZbnRhCupeEUrVRgtFc0BlIQhLzPK-miwuyt9G4LXRqy9bcBvRErEthyxLUfsy-mEcid82lpv_qHFfLQY_XWTnWu7H7_2LvgPwQtW5OJpMRHT1fN8mS1Lcce-AYCfeyQ</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Qi, Jiangang</creator><creator>Wu, Hongyou</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201104</creationdate><title>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</title><author>Qi, Jiangang ; Wu, Hongyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>34L40</topic><topic>47B25</topic><topic>Dirichlet condition</topic><topic>Friedrichs extension</topic><topic>Hamiltonian differential system</topic><topic>limit point condition</topic><topic>MSC Primary: 34L05</topic><topic>Schrödinger operator</topic><topic>Secondary: 34B20</topic><topic>singular potential</topic><topic>strong limit point condition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Jiangang</creatorcontrib><creatorcontrib>Wu, Hongyou</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Jiangang</au><au>Wu, Hongyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2011-04</date><risdate>2011</risdate><volume>284</volume><issue>5-6</issue><spage>764</spage><epage>780</epage><pages>764-780</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</abstract><cop>Germany</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.200910006</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2011-04, Vol.284 (5-6), p.764-780
issn 0025-584X
1522-2616
language eng
recordid cdi_crossref_primary_10_1002_mana_200910006
source Wiley-Blackwell Journals
subjects 34L40
47B25
Dirichlet condition
Friedrichs extension
Hamiltonian differential system
limit point condition
MSC Primary: 34L05
Schrödinger operator
Secondary: 34B20
singular potential
strong limit point condition
title Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20point,%20strong%20limit%20point%20and%20Dirichlet%20conditions%20for%20Hamiltonian%20differential%20systems&rft.jtitle=Mathematische%20Nachrichten&rft.au=Qi,%20Jiangang&rft.date=2011-04&rft.volume=284&rft.issue=5-6&rft.spage=764&rft.epage=780&rft.pages=764-780&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.200910006&rft_dat=%3Cwiley_cross%3EMANA200910006%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true