Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems
This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equ...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2011-04, Vol.284 (5-6), p.764-780 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | 5-6 |
container_start_page | 764 |
container_title | Mathematische Nachrichten |
container_volume | 284 |
creator | Qi, Jiangang Wu, Hongyou |
description | This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
doi_str_mv | 10.1002/mana.200910006 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_200910006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MANA200910006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXz_kBbs0mu9nusVRtlbZetBZBwmw-NLqbLUlA--_dUqnePA3v8DwD8yJ0npJBSgi9bMDBgBJSdonwA9RLc0oTylN-iHodkCf5MFsdo5MQ3juiLAveQy8z29iI16118QKH6Fv3iuvfHQan8JX1Vr7VOmLZOmWjbV3ApvV4Co2tY-ssOKysMdprFy3UOGxC1E04RUcG6qDPfmYfPd5cP4ynyex-cjsezRLJaMETqDSjjGSsKmk-5FDoAlJDU8W4UlICZbnRhCupeEUrVRgtFc0BlIQhLzPK-miwuyt9G4LXRqy9bcBvRErEthyxLUfsy-mEcid82lpv_qHFfLQY_XWTnWu7H7_2LvgPwQtW5OJpMRHT1fN8mS1Lcce-AYCfeyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</title><source>Wiley-Blackwell Journals</source><creator>Qi, Jiangang ; Wu, Hongyou</creator><creatorcontrib>Qi, Jiangang ; Wu, Hongyou</creatorcontrib><description>This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.200910006</identifier><language>eng</language><publisher>Germany: WILEY-VCH Verlag</publisher><subject>34L40 ; 47B25 ; Dirichlet condition ; Friedrichs extension ; Hamiltonian differential system ; limit point condition ; MSC Primary: 34L05 ; Schrödinger operator ; Secondary: 34B20 ; singular potential ; strong limit point condition</subject><ispartof>Mathematische Nachrichten, 2011-04, Vol.284 (5-6), p.764-780</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</citedby><cites>FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.200910006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.200910006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Qi, Jiangang</creatorcontrib><creatorcontrib>Wu, Hongyou</creatorcontrib><title>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</description><subject>34L40</subject><subject>47B25</subject><subject>Dirichlet condition</subject><subject>Friedrichs extension</subject><subject>Hamiltonian differential system</subject><subject>limit point condition</subject><subject>MSC Primary: 34L05</subject><subject>Schrödinger operator</subject><subject>Secondary: 34B20</subject><subject>singular potential</subject><subject>strong limit point condition</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXz_kBbs0mu9nusVRtlbZetBZBwmw-NLqbLUlA--_dUqnePA3v8DwD8yJ0npJBSgi9bMDBgBJSdonwA9RLc0oTylN-iHodkCf5MFsdo5MQ3juiLAveQy8z29iI16118QKH6Fv3iuvfHQan8JX1Vr7VOmLZOmWjbV3ApvV4Co2tY-ssOKysMdprFy3UOGxC1E04RUcG6qDPfmYfPd5cP4ynyex-cjsezRLJaMETqDSjjGSsKmk-5FDoAlJDU8W4UlICZbnRhCupeEUrVRgtFc0BlIQhLzPK-miwuyt9G4LXRqy9bcBvRErEthyxLUfsy-mEcid82lpv_qHFfLQY_XWTnWu7H7_2LvgPwQtW5OJpMRHT1fN8mS1Lcce-AYCfeyQ</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Qi, Jiangang</creator><creator>Wu, Hongyou</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201104</creationdate><title>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</title><author>Qi, Jiangang ; Wu, Hongyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3276-abe323043b92586a7e7a1f21d36ddcca235fe06dcd6b2bd7fecd25aadca869423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>34L40</topic><topic>47B25</topic><topic>Dirichlet condition</topic><topic>Friedrichs extension</topic><topic>Hamiltonian differential system</topic><topic>limit point condition</topic><topic>MSC Primary: 34L05</topic><topic>Schrödinger operator</topic><topic>Secondary: 34B20</topic><topic>singular potential</topic><topic>strong limit point condition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Jiangang</creatorcontrib><creatorcontrib>Wu, Hongyou</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Jiangang</au><au>Wu, Hongyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2011-04</date><risdate>2011</risdate><volume>284</volume><issue>5-6</issue><spage>764</spage><epage>780</epage><pages>764-780</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>This paper deals with singular Hamiltonian differential systems. Three conditions on the asymptotic behavior or square integrability of their maximal domain functions at a singular end point are studied: the limit point condition, the strong limit point condition and the Dirichlet condition. The equivalence between the limit point and strong limit point conditions is established for a class of such systems, and for another class, the three conditions are shown to imply each other. As an application, two unified descriptions of the Friedrichs extension for some systems in the second class are obtained. A key feature of the descriptions is: they do not use the deficiency indices of the systems. Several illustrating examples are presented. In particular, two simple descriptions of the Friedrichs extension for a family of Schrödinger operators with singular potentials are achieved. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</abstract><cop>Germany</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.200910006</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2011-04, Vol.284 (5-6), p.764-780 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mana_200910006 |
source | Wiley-Blackwell Journals |
subjects | 34L40 47B25 Dirichlet condition Friedrichs extension Hamiltonian differential system limit point condition MSC Primary: 34L05 Schrödinger operator Secondary: 34B20 singular potential strong limit point condition |
title | Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20point,%20strong%20limit%20point%20and%20Dirichlet%20conditions%20for%20Hamiltonian%20differential%20systems&rft.jtitle=Mathematische%20Nachrichten&rft.au=Qi,%20Jiangang&rft.date=2011-04&rft.volume=284&rft.issue=5-6&rft.spage=764&rft.epage=780&rft.pages=764-780&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.200910006&rft_dat=%3Cwiley_cross%3EMANA200910006%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |