Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone
Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2003-01, Vol.204 (1), p.171-179 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Macromolecular chemistry and physics |
container_volume | 204 |
creator | Ydens, Isabelle Degée, Philippe Dubois, Philippe Libiszowski, Jan Duda, Andrzej Penczek, Stanislaw |
description | Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator.
Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵). |
doi_str_mv | 10.1002/macp.200290071 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_macp_200290071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MACP200290071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqVw5ZwLN1z8E8f1sQq0IKU_qooqcbEcxwZDmkR2JOiD8Ro8E2mDCjdOu5qdb1aaILhEcIAgxDcbqeoBbjcOIUNHQQ9RjADhhB63O8QYIELxaXDm_SuEcAg56wVpUm0yW9ryORytlouwMuFUNy9SuW0hG-1DWebhcr4_pNcpuLWFVI3N9f7w9QkSWbtqp1WlPg9OjCy8vviZ_eBxfLdK7kE6nzwkoxQoQikCOcfKYEZ1PEQywpAZxbjBPMo1iVvBZBRHynAypChSGeE6R1ms8hwSKlkWkX4w6HKVq7x32oja2Y10W4Gg2HUhdl2IQxctcNUBtfRKFsbJUln_S0WU89bb-njne7eF3v6TKqajZPH3B-hY6xv9cWClexMxI4yK9WwiZotksn4ax4KQbyVJfnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ydens, Isabelle ; Degée, Philippe ; Dubois, Philippe ; Libiszowski, Jan ; Duda, Andrzej ; Penczek, Stanislaw</creator><creatorcontrib>Ydens, Isabelle ; Degée, Philippe ; Dubois, Philippe ; Libiszowski, Jan ; Duda, Andrzej ; Penczek, Stanislaw</creatorcontrib><description>Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator.
Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵).</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.200290071</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; atom transfer radical polymerization ; Exact sciences and technology ; L,L‐dilactide ; L-dilactide ; methyl methacrylate ; Organic polymers ; Physicochemistry of polymers ; Polymerization ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; ring-opening polymerization ; ε-caprolactone</subject><ispartof>Macromolecular chemistry and physics, 2003-01, Vol.204 (1), p.171-179</ispartof><rights>2002 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</citedby><cites>FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.200290071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.200290071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14599029$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ydens, Isabelle</creatorcontrib><creatorcontrib>Degée, Philippe</creatorcontrib><creatorcontrib>Dubois, Philippe</creatorcontrib><creatorcontrib>Libiszowski, Jan</creatorcontrib><creatorcontrib>Duda, Andrzej</creatorcontrib><creatorcontrib>Penczek, Stanislaw</creatorcontrib><title>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</title><title>Macromolecular chemistry and physics</title><addtitle>Macromol. Chem. Phys</addtitle><description>Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator.
Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵).</description><subject>Applied sciences</subject><subject>atom transfer radical polymerization</subject><subject>Exact sciences and technology</subject><subject>L,L‐dilactide</subject><subject>L-dilactide</subject><subject>methyl methacrylate</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymerization</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>ring-opening polymerization</subject><subject>ε-caprolactone</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqVw5ZwLN1z8E8f1sQq0IKU_qooqcbEcxwZDmkR2JOiD8Ro8E2mDCjdOu5qdb1aaILhEcIAgxDcbqeoBbjcOIUNHQQ9RjADhhB63O8QYIELxaXDm_SuEcAg56wVpUm0yW9ryORytlouwMuFUNy9SuW0hG-1DWebhcr4_pNcpuLWFVI3N9f7w9QkSWbtqp1WlPg9OjCy8vviZ_eBxfLdK7kE6nzwkoxQoQikCOcfKYEZ1PEQywpAZxbjBPMo1iVvBZBRHynAypChSGeE6R1ms8hwSKlkWkX4w6HKVq7x32oja2Y10W4Gg2HUhdl2IQxctcNUBtfRKFsbJUln_S0WU89bb-njne7eF3v6TKqajZPH3B-hY6xv9cWClexMxI4yK9WwiZotksn4ax4KQbyVJfnQ</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Ydens, Isabelle</creator><creator>Degée, Philippe</creator><creator>Dubois, Philippe</creator><creator>Libiszowski, Jan</creator><creator>Duda, Andrzej</creator><creator>Penczek, Stanislaw</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200301</creationdate><title>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</title><author>Ydens, Isabelle ; Degée, Philippe ; Dubois, Philippe ; Libiszowski, Jan ; Duda, Andrzej ; Penczek, Stanislaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>atom transfer radical polymerization</topic><topic>Exact sciences and technology</topic><topic>L,L‐dilactide</topic><topic>L-dilactide</topic><topic>methyl methacrylate</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymerization</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>ring-opening polymerization</topic><topic>ε-caprolactone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ydens, Isabelle</creatorcontrib><creatorcontrib>Degée, Philippe</creatorcontrib><creatorcontrib>Dubois, Philippe</creatorcontrib><creatorcontrib>Libiszowski, Jan</creatorcontrib><creatorcontrib>Duda, Andrzej</creatorcontrib><creatorcontrib>Penczek, Stanislaw</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ydens, Isabelle</au><au>Degée, Philippe</au><au>Dubois, Philippe</au><au>Libiszowski, Jan</au><au>Duda, Andrzej</au><au>Penczek, Stanislaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</atitle><jtitle>Macromolecular chemistry and physics</jtitle><addtitle>Macromol. Chem. Phys</addtitle><date>2003-01</date><risdate>2003</risdate><volume>204</volume><issue>1</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator.
Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/macp.200290071</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2003-01, Vol.204 (1), p.171-179 |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_crossref_primary_10_1002_macp_200290071 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences atom transfer radical polymerization Exact sciences and technology L,L‐dilactide L-dilactide methyl methacrylate Organic polymers Physicochemistry of polymers Polymerization Preparation, kinetics, thermodynamics, mechanism and catalysts ring-opening polymerization ε-caprolactone |
title | Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20ATRP%20of%20Methacrylates%20and%20ROP%20of%20L,L-Dilactide%20and%20%CE%B5-Caprolactone&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Ydens,%20Isabelle&rft.date=2003-01&rft.volume=204&rft.issue=1&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.200290071&rft_dat=%3Cwiley_cross%3EMACP200290071%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |