Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone

Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular chemistry and physics 2003-01, Vol.204 (1), p.171-179
Hauptverfasser: Ydens, Isabelle, Degée, Philippe, Dubois, Philippe, Libiszowski, Jan, Duda, Andrzej, Penczek, Stanislaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 1
container_start_page 171
container_title Macromolecular chemistry and physics
container_volume 204
creator Ydens, Isabelle
Degée, Philippe
Dubois, Philippe
Libiszowski, Jan
Duda, Andrzej
Penczek, Stanislaw
description Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator. Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵).
doi_str_mv 10.1002/macp.200290071
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_macp_200290071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MACP200290071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqVw5ZwLN1z8E8f1sQq0IKU_qooqcbEcxwZDmkR2JOiD8Ro8E2mDCjdOu5qdb1aaILhEcIAgxDcbqeoBbjcOIUNHQQ9RjADhhB63O8QYIELxaXDm_SuEcAg56wVpUm0yW9ryORytlouwMuFUNy9SuW0hG-1DWebhcr4_pNcpuLWFVI3N9f7w9QkSWbtqp1WlPg9OjCy8vviZ_eBxfLdK7kE6nzwkoxQoQikCOcfKYEZ1PEQywpAZxbjBPMo1iVvBZBRHynAypChSGeE6R1ms8hwSKlkWkX4w6HKVq7x32oja2Y10W4Gg2HUhdl2IQxctcNUBtfRKFsbJUln_S0WU89bb-njne7eF3v6TKqajZPH3B-hY6xv9cWClexMxI4yK9WwiZotksn4ax4KQbyVJfnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ydens, Isabelle ; Degée, Philippe ; Dubois, Philippe ; Libiszowski, Jan ; Duda, Andrzej ; Penczek, Stanislaw</creator><creatorcontrib>Ydens, Isabelle ; Degée, Philippe ; Dubois, Philippe ; Libiszowski, Jan ; Duda, Andrzej ; Penczek, Stanislaw</creatorcontrib><description>Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator. Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵).</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.200290071</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; atom transfer radical polymerization ; Exact sciences and technology ; L,L‐dilactide ; L-dilactide ; methyl methacrylate ; Organic polymers ; Physicochemistry of polymers ; Polymerization ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; ring-opening polymerization ; ε-caprolactone</subject><ispartof>Macromolecular chemistry and physics, 2003-01, Vol.204 (1), p.171-179</ispartof><rights>2002 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</citedby><cites>FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.200290071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.200290071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14599029$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ydens, Isabelle</creatorcontrib><creatorcontrib>Degée, Philippe</creatorcontrib><creatorcontrib>Dubois, Philippe</creatorcontrib><creatorcontrib>Libiszowski, Jan</creatorcontrib><creatorcontrib>Duda, Andrzej</creatorcontrib><creatorcontrib>Penczek, Stanislaw</creatorcontrib><title>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</title><title>Macromolecular chemistry and physics</title><addtitle>Macromol. Chem. Phys</addtitle><description>Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator. Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵).</description><subject>Applied sciences</subject><subject>atom transfer radical polymerization</subject><subject>Exact sciences and technology</subject><subject>L,L‐dilactide</subject><subject>L-dilactide</subject><subject>methyl methacrylate</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymerization</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>ring-opening polymerization</subject><subject>ε-caprolactone</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqVw5ZwLN1z8E8f1sQq0IKU_qooqcbEcxwZDmkR2JOiD8Ro8E2mDCjdOu5qdb1aaILhEcIAgxDcbqeoBbjcOIUNHQQ9RjADhhB63O8QYIELxaXDm_SuEcAg56wVpUm0yW9ryORytlouwMuFUNy9SuW0hG-1DWebhcr4_pNcpuLWFVI3N9f7w9QkSWbtqp1WlPg9OjCy8vviZ_eBxfLdK7kE6nzwkoxQoQikCOcfKYEZ1PEQywpAZxbjBPMo1iVvBZBRHynAypChSGeE6R1ms8hwSKlkWkX4w6HKVq7x32oja2Y10W4Gg2HUhdl2IQxctcNUBtfRKFsbJUln_S0WU89bb-njne7eF3v6TKqajZPH3B-hY6xv9cWClexMxI4yK9WwiZotksn4ax4KQbyVJfnQ</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Ydens, Isabelle</creator><creator>Degée, Philippe</creator><creator>Dubois, Philippe</creator><creator>Libiszowski, Jan</creator><creator>Duda, Andrzej</creator><creator>Penczek, Stanislaw</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200301</creationdate><title>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</title><author>Ydens, Isabelle ; Degée, Philippe ; Dubois, Philippe ; Libiszowski, Jan ; Duda, Andrzej ; Penczek, Stanislaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3551-d92cf275e681a4207fc79f294de36a42fb524cf938514cb39ed1b6cdd035a7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>atom transfer radical polymerization</topic><topic>Exact sciences and technology</topic><topic>L,L‐dilactide</topic><topic>L-dilactide</topic><topic>methyl methacrylate</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymerization</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>ring-opening polymerization</topic><topic>ε-caprolactone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ydens, Isabelle</creatorcontrib><creatorcontrib>Degée, Philippe</creatorcontrib><creatorcontrib>Dubois, Philippe</creatorcontrib><creatorcontrib>Libiszowski, Jan</creatorcontrib><creatorcontrib>Duda, Andrzej</creatorcontrib><creatorcontrib>Penczek, Stanislaw</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ydens, Isabelle</au><au>Degée, Philippe</au><au>Dubois, Philippe</au><au>Libiszowski, Jan</au><au>Duda, Andrzej</au><au>Penczek, Stanislaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone</atitle><jtitle>Macromolecular chemistry and physics</jtitle><addtitle>Macromol. Chem. Phys</addtitle><date>2003-01</date><risdate>2003</risdate><volume>204</volume><issue>1</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Coupling atom transfer radical polymerization (ATRP) and coordination‐insertion ring‐opening polymerization (ROP) provided a controlled two‐step access to polymethacrylate‐graft‐polyaliphatic ester graft copolymers. In the first step, copolymerization of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 80 °C at high MMA concentration by using ethyl 2‐bromoisobutyrate and [NiBr2(PPh3)2] as initiator and catalyst, respectively. Kinetic and molar masses measurements, as well as 1H NMR spectra analysis of the resulting poly(MMA‐co‐HEMA)s highlighted the controlled character of the radical copolymerization, while the determination of the reactivity ratios attested preferential incorporation of HEMA. The second step consisted of the ROP of ε‐caprolactone or L,L‐dilactide, in THF at 80 °C, promoted by tin octoate (Sn(Oct)2) and coinitiated by poly(MMA‐co‐HEMA)s obtained in the first step. Once again, kinetic, molar mass, and 1H NMR data demonstrated that the copolymerization was under control and started on the hydroxyl functions available on the poly(MMA‐co‐HEMA) multifunctional macroinitiator. Comparison of the SEC traces for the poly(MMA‐co‐HEMA) macroinitiator P2 (line only), the polymethacrylate‐g‐PLA copolymer C2 (line marked by ○), and the polymethacrylate‐g‐PLA C3 (line marked by ▵).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/macp.200290071</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1352
ispartof Macromolecular chemistry and physics, 2003-01, Vol.204 (1), p.171-179
issn 1022-1352
1521-3935
language eng
recordid cdi_crossref_primary_10_1002_macp_200290071
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
atom transfer radical polymerization
Exact sciences and technology
L,L‐dilactide
L-dilactide
methyl methacrylate
Organic polymers
Physicochemistry of polymers
Polymerization
Preparation, kinetics, thermodynamics, mechanism and catalysts
ring-opening polymerization
ε-caprolactone
title Combining ATRP of Methacrylates and ROP of L,L-Dilactide and ε-Caprolactone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20ATRP%20of%20Methacrylates%20and%20ROP%20of%20L,L-Dilactide%20and%20%CE%B5-Caprolactone&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Ydens,%20Isabelle&rft.date=2003-01&rft.volume=204&rft.issue=1&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.200290071&rft_dat=%3Cwiley_cross%3EMACP200290071%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true