Thermal reactions of amphotropic copolymers studied by thermogravimetry and temperature-resolved pyrolysis-field ionization mass spectrometry

The thermal degradation mechanisms of amphiphilic acrylic copolymers containing mesogenic pyrimidine side chains and hydrophilic 2‐hydroxyethyl acrylate (HEA) main‐chain spacer units were investigated by thermogravimetry (TG) and pyrolysis‐field ionization mass spectrometry (Py‐FIMS). The degradatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Die Makromolekulare Chemie 1991-07, Vol.192 (7), p.1567-1587
Hauptverfasser: Plage, Bernd, Schulten, Hans-Rolf, Ringsdorf, Helmut, Schuster, Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1587
container_issue 7
container_start_page 1567
container_title Die Makromolekulare Chemie
container_volume 192
creator Plage, Bernd
Schulten, Hans-Rolf
Ringsdorf, Helmut
Schuster, Andreas
description The thermal degradation mechanisms of amphiphilic acrylic copolymers containing mesogenic pyrimidine side chains and hydrophilic 2‐hydroxyethyl acrylate (HEA) main‐chain spacer units were investigated by thermogravimetry (TG) and pyrolysis‐field ionization mass spectrometry (Py‐FIMS). The degradation behaviour of these polymers depends on the amount of HEA incorporated. Thermogravimetry revealed that the main decomposition occurs in a single step for the pyrimidine homopolymer, whereas with increasing HEA content a two‐step process evolves. The major products identified by Py‐FIMS are two alcohols and one olefin split from the aromatic side chains. Depolymerization is only a minor degradation pathway. The rather complex thermal behaviour can be explained by three different reaction mechanisms: (a) alcohol formation via reaction of the HEA hydroxyl groups with ester groups in the side chains, (b) intramolecular cis‐elimination forming a volatile olefin and carboxylic acid groups remaining at the polymer backbone, and (c) the reaction of these acid groups with ester bonds forming the alcohols. Steps (b) and (c) are dominant for the pyrimidine homopolymer. With increasing HEA content in the copolymers step (a) becomes more important and, in addition, chemical crosslinking occurs. The mesogenic monomer, which was also examined, polymerized under the experimental conditions and showed essentially the thermal features of the pyrimidine homopolymer.
doi_str_mv 10.1002/macp.1991.021920711
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_macp_1991_021920711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_TWW900P1_K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-c11614e06a24d966de8ec2642ba753f620477ce33670fef7d1fa83a0efcd1c923</originalsourceid><addsrcrecordid>eNqNkM1OAjEURidGExF9Ajd9gcH-QMtsTAhRNKKywOCuKe2tVGfopB3Q8R18Z2fEEJeubpPbc77cL0nOCe4RjOlFoXTZI1lGepiSjGJByEHSaTaDlBD-fPjnfZycxPiKMSMCi07yNV9BKFSOAihdOb-OyFukinLlq-BLp5H2pc_rAkJEsdoYBwYta1S1mH8JausKqEKN1NqgCooSgqo2AdIA0efb5nNZh4aPLqbWQW5Qk-E-VRuFChUbaQm6ifqxnCZHVuURzn5nN3m6vpqPb9Lp4-R2PJqmmgpKUt0cQvqAuaJ9k3FuYAia8j5dKjFgllPcF0IDY1xgC1YYYtWQKQxWG6IzyroJ23l18DEGsLIMrlChlgTLtlHZNirbRuW-0Ya63FHvLof6P4i8H41nfwXpTuBiBR97gQpvkgsmBnLxMJHzxSLDeEbkHfsGGAqRrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal reactions of amphotropic copolymers studied by thermogravimetry and temperature-resolved pyrolysis-field ionization mass spectrometry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Plage, Bernd ; Schulten, Hans-Rolf ; Ringsdorf, Helmut ; Schuster, Andreas</creator><creatorcontrib>Plage, Bernd ; Schulten, Hans-Rolf ; Ringsdorf, Helmut ; Schuster, Andreas</creatorcontrib><description>The thermal degradation mechanisms of amphiphilic acrylic copolymers containing mesogenic pyrimidine side chains and hydrophilic 2‐hydroxyethyl acrylate (HEA) main‐chain spacer units were investigated by thermogravimetry (TG) and pyrolysis‐field ionization mass spectrometry (Py‐FIMS). The degradation behaviour of these polymers depends on the amount of HEA incorporated. Thermogravimetry revealed that the main decomposition occurs in a single step for the pyrimidine homopolymer, whereas with increasing HEA content a two‐step process evolves. The major products identified by Py‐FIMS are two alcohols and one olefin split from the aromatic side chains. Depolymerization is only a minor degradation pathway. The rather complex thermal behaviour can be explained by three different reaction mechanisms: (a) alcohol formation via reaction of the HEA hydroxyl groups with ester groups in the side chains, (b) intramolecular cis‐elimination forming a volatile olefin and carboxylic acid groups remaining at the polymer backbone, and (c) the reaction of these acid groups with ester bonds forming the alcohols. Steps (b) and (c) are dominant for the pyrimidine homopolymer. With increasing HEA content in the copolymers step (a) becomes more important and, in addition, chemical crosslinking occurs. The mesogenic monomer, which was also examined, polymerized under the experimental conditions and showed essentially the thermal features of the pyrimidine homopolymer.</description><identifier>ISSN: 0025-116X</identifier><identifier>EISSN: 0025-116X</identifier><identifier>DOI: 10.1002/macp.1991.021920711</identifier><language>eng</language><publisher>Basel: Hüthig &amp; Wepf Verlag</publisher><ispartof>Die Makromolekulare Chemie, 1991-07, Vol.192 (7), p.1567-1587</ispartof><rights>1991 Hüthig &amp; Wepf Verlag, Basel</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2721-c11614e06a24d966de8ec2642ba753f620477ce33670fef7d1fa83a0efcd1c923</citedby><cites>FETCH-LOGICAL-c2721-c11614e06a24d966de8ec2642ba753f620477ce33670fef7d1fa83a0efcd1c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.1991.021920711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.1991.021920711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Plage, Bernd</creatorcontrib><creatorcontrib>Schulten, Hans-Rolf</creatorcontrib><creatorcontrib>Ringsdorf, Helmut</creatorcontrib><creatorcontrib>Schuster, Andreas</creatorcontrib><title>Thermal reactions of amphotropic copolymers studied by thermogravimetry and temperature-resolved pyrolysis-field ionization mass spectrometry</title><title>Die Makromolekulare Chemie</title><addtitle>Makromol. Chem</addtitle><description>The thermal degradation mechanisms of amphiphilic acrylic copolymers containing mesogenic pyrimidine side chains and hydrophilic 2‐hydroxyethyl acrylate (HEA) main‐chain spacer units were investigated by thermogravimetry (TG) and pyrolysis‐field ionization mass spectrometry (Py‐FIMS). The degradation behaviour of these polymers depends on the amount of HEA incorporated. Thermogravimetry revealed that the main decomposition occurs in a single step for the pyrimidine homopolymer, whereas with increasing HEA content a two‐step process evolves. The major products identified by Py‐FIMS are two alcohols and one olefin split from the aromatic side chains. Depolymerization is only a minor degradation pathway. The rather complex thermal behaviour can be explained by three different reaction mechanisms: (a) alcohol formation via reaction of the HEA hydroxyl groups with ester groups in the side chains, (b) intramolecular cis‐elimination forming a volatile olefin and carboxylic acid groups remaining at the polymer backbone, and (c) the reaction of these acid groups with ester bonds forming the alcohols. Steps (b) and (c) are dominant for the pyrimidine homopolymer. With increasing HEA content in the copolymers step (a) becomes more important and, in addition, chemical crosslinking occurs. The mesogenic monomer, which was also examined, polymerized under the experimental conditions and showed essentially the thermal features of the pyrimidine homopolymer.</description><issn>0025-116X</issn><issn>0025-116X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OAjEURidGExF9Ajd9gcH-QMtsTAhRNKKywOCuKe2tVGfopB3Q8R18Z2fEEJeubpPbc77cL0nOCe4RjOlFoXTZI1lGepiSjGJByEHSaTaDlBD-fPjnfZycxPiKMSMCi07yNV9BKFSOAihdOb-OyFukinLlq-BLp5H2pc_rAkJEsdoYBwYta1S1mH8JausKqEKN1NqgCooSgqo2AdIA0efb5nNZh4aPLqbWQW5Qk-E-VRuFChUbaQm6ifqxnCZHVuURzn5nN3m6vpqPb9Lp4-R2PJqmmgpKUt0cQvqAuaJ9k3FuYAia8j5dKjFgllPcF0IDY1xgC1YYYtWQKQxWG6IzyroJ23l18DEGsLIMrlChlgTLtlHZNirbRuW-0Ya63FHvLof6P4i8H41nfwXpTuBiBR97gQpvkgsmBnLxMJHzxSLDeEbkHfsGGAqRrA</recordid><startdate>199107</startdate><enddate>199107</enddate><creator>Plage, Bernd</creator><creator>Schulten, Hans-Rolf</creator><creator>Ringsdorf, Helmut</creator><creator>Schuster, Andreas</creator><general>Hüthig &amp; Wepf Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199107</creationdate><title>Thermal reactions of amphotropic copolymers studied by thermogravimetry and temperature-resolved pyrolysis-field ionization mass spectrometry</title><author>Plage, Bernd ; Schulten, Hans-Rolf ; Ringsdorf, Helmut ; Schuster, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-c11614e06a24d966de8ec2642ba753f620477ce33670fef7d1fa83a0efcd1c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Plage, Bernd</creatorcontrib><creatorcontrib>Schulten, Hans-Rolf</creatorcontrib><creatorcontrib>Ringsdorf, Helmut</creatorcontrib><creatorcontrib>Schuster, Andreas</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Die Makromolekulare Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plage, Bernd</au><au>Schulten, Hans-Rolf</au><au>Ringsdorf, Helmut</au><au>Schuster, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal reactions of amphotropic copolymers studied by thermogravimetry and temperature-resolved pyrolysis-field ionization mass spectrometry</atitle><jtitle>Die Makromolekulare Chemie</jtitle><addtitle>Makromol. Chem</addtitle><date>1991-07</date><risdate>1991</risdate><volume>192</volume><issue>7</issue><spage>1567</spage><epage>1587</epage><pages>1567-1587</pages><issn>0025-116X</issn><eissn>0025-116X</eissn><abstract>The thermal degradation mechanisms of amphiphilic acrylic copolymers containing mesogenic pyrimidine side chains and hydrophilic 2‐hydroxyethyl acrylate (HEA) main‐chain spacer units were investigated by thermogravimetry (TG) and pyrolysis‐field ionization mass spectrometry (Py‐FIMS). The degradation behaviour of these polymers depends on the amount of HEA incorporated. Thermogravimetry revealed that the main decomposition occurs in a single step for the pyrimidine homopolymer, whereas with increasing HEA content a two‐step process evolves. The major products identified by Py‐FIMS are two alcohols and one olefin split from the aromatic side chains. Depolymerization is only a minor degradation pathway. The rather complex thermal behaviour can be explained by three different reaction mechanisms: (a) alcohol formation via reaction of the HEA hydroxyl groups with ester groups in the side chains, (b) intramolecular cis‐elimination forming a volatile olefin and carboxylic acid groups remaining at the polymer backbone, and (c) the reaction of these acid groups with ester bonds forming the alcohols. Steps (b) and (c) are dominant for the pyrimidine homopolymer. With increasing HEA content in the copolymers step (a) becomes more important and, in addition, chemical crosslinking occurs. The mesogenic monomer, which was also examined, polymerized under the experimental conditions and showed essentially the thermal features of the pyrimidine homopolymer.</abstract><cop>Basel</cop><pub>Hüthig &amp; Wepf Verlag</pub><doi>10.1002/macp.1991.021920711</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-116X
ispartof Die Makromolekulare Chemie, 1991-07, Vol.192 (7), p.1567-1587
issn 0025-116X
0025-116X
language eng
recordid cdi_crossref_primary_10_1002_macp_1991_021920711
source Wiley Online Library Journals Frontfile Complete
title Thermal reactions of amphotropic copolymers studied by thermogravimetry and temperature-resolved pyrolysis-field ionization mass spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20reactions%20of%20amphotropic%20copolymers%20studied%20by%20thermogravimetry%20and%20temperature-resolved%20pyrolysis-field%20ionization%20mass%20spectrometry&rft.jtitle=Die%20Makromolekulare%20Chemie&rft.au=Plage,%20Bernd&rft.date=1991-07&rft.volume=192&rft.issue=7&rft.spage=1567&rft.epage=1587&rft.pages=1567-1587&rft.issn=0025-116X&rft.eissn=0025-116X&rft_id=info:doi/10.1002/macp.1991.021920711&rft_dat=%3Cistex_cross%3Eark_67375_WNG_TWW900P1_K%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true