Corrosion protection of steel cut‐edges by hot‐dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part II. Numerical simulations

In this paper a mechanistic model is elaborated to simulate the corrosion behavior of aluminum–zinc–magnesium coatings on steel. The model is based on the mass transport and reactions of the ions in the electrolyte (MITReM). The finite element method has been used, which allows to perform time‐depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and corrosion 2019-05, Vol.70 (5), p.780-792
Hauptverfasser: Dolgikh, Olga, Simillion, Hans, Lamaka, Sviatlana V., Bastos, Alexandre C., Xue, Huibin B., Taryba, Maryna G., Oliveira, Andre R., Allély, Christian, Van Den Bossche, Bart, Van Den Bergh, Krista, De Strycker, Joost, Deconinck, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue 5
container_start_page 780
container_title Materials and corrosion
container_volume 70
creator Dolgikh, Olga
Simillion, Hans
Lamaka, Sviatlana V.
Bastos, Alexandre C.
Xue, Huibin B.
Taryba, Maryna G.
Oliveira, Andre R.
Allély, Christian
Van Den Bossche, Bart
Van Den Bergh, Krista
De Strycker, Joost
Deconinck, Johan
description In this paper a mechanistic model is elaborated to simulate the corrosion behavior of aluminum–zinc–magnesium coatings on steel. The model is based on the mass transport and reactions of the ions in the electrolyte (MITReM). The finite element method has been used, which allows to perform time‐dependent simulations with micrometer scale to study local corrosion effects. The formation of corrosion products and the prediction of electrolyte concentration distributions are compared for different metallic coating compositions. The spatial and temporal simulation of complex precipitates provides an additional tool to validate the model through corrosion product characterization. The simulation results are compared to experimental observations, presented in part I of this paper. The MITReM simulations are limited to the micro‐scale and therefore to small geometries. A link is made with the potential model which can be applied on macro‐scale objects. A qualitative agreement is found between the simulations at both scales and the experiments. Further quantification of this model would optimize the simulations for material design and for predictive maintenance. A mechanistic model for cut‐edge corrosion is developed and validated. The numerical experiments complement the experimental work (presented in part I of this work) and predict pH distribution, corrosion currents, ion distributions, and the precipitation of corrosion products. Both time dependent and spatially resolved results confirm the limited protection of the substrate by the formed corrosion products.
doi_str_mv 10.1002/maco.201810210
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_maco_201810210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MACO201810210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2410-eb8c675e0faf6a0a07e7f2a93c7264d928b23ff1277900277db3086cc869bc7a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMntBAokEn5PGCVsV8VGpHwywsESOYwcjJ67ilKpMHVjY-I39JTQqgpHp7qT3udM9CJ0C8YEQelVxYX1KIAZCgeyhHgwoeCGwaB_1SBIybwDADtGRc6-EACRB2EMfqW0a67St8byxrRRt11qFXSulwWLRbtZfsiilw_kKv9huLPQcl9y88Vq_ywIPzflzfTkpL7CwvNV16bCuMWzWn8v2DE95aq7xA29aPBr5eLqoZKMFN9jpamF4d84dowPFjZMnP7WPnm5vHtN7bzy7G6XDsSdoCMSTeSwiNpBEcRVxwgmTTFGeBILRKCwSGuc0UAooY8lWCGNFHpA4EiKOklwwHvSRv9srti-7Rqps3uiKN6sMSNY5zDqH2a_DLZDsgKU2cvVPOpsM09kf-w0tkHk7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Corrosion protection of steel cut‐edges by hot‐dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part II. Numerical simulations</title><source>Wiley Online Library All Journals</source><creator>Dolgikh, Olga ; Simillion, Hans ; Lamaka, Sviatlana V. ; Bastos, Alexandre C. ; Xue, Huibin B. ; Taryba, Maryna G. ; Oliveira, Andre R. ; Allély, Christian ; Van Den Bossche, Bart ; Van Den Bergh, Krista ; De Strycker, Joost ; Deconinck, Johan</creator><creatorcontrib>Dolgikh, Olga ; Simillion, Hans ; Lamaka, Sviatlana V. ; Bastos, Alexandre C. ; Xue, Huibin B. ; Taryba, Maryna G. ; Oliveira, Andre R. ; Allély, Christian ; Van Den Bossche, Bart ; Van Den Bergh, Krista ; De Strycker, Joost ; Deconinck, Johan</creatorcontrib><description>In this paper a mechanistic model is elaborated to simulate the corrosion behavior of aluminum–zinc–magnesium coatings on steel. The model is based on the mass transport and reactions of the ions in the electrolyte (MITReM). The finite element method has been used, which allows to perform time‐dependent simulations with micrometer scale to study local corrosion effects. The formation of corrosion products and the prediction of electrolyte concentration distributions are compared for different metallic coating compositions. The spatial and temporal simulation of complex precipitates provides an additional tool to validate the model through corrosion product characterization. The simulation results are compared to experimental observations, presented in part I of this paper. The MITReM simulations are limited to the micro‐scale and therefore to small geometries. A link is made with the potential model which can be applied on macro‐scale objects. A qualitative agreement is found between the simulations at both scales and the experiments. Further quantification of this model would optimize the simulations for material design and for predictive maintenance. A mechanistic model for cut‐edge corrosion is developed and validated. The numerical experiments complement the experimental work (presented in part I of this work) and predict pH distribution, corrosion currents, ion distributions, and the precipitation of corrosion products. Both time dependent and spatially resolved results confirm the limited protection of the substrate by the formed corrosion products.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.201810210</identifier><language>eng</language><subject>Al(Zn Mg) alloys ; cut‐edge corrosion ; multi‐ion modeling</subject><ispartof>Materials and corrosion, 2019-05, Vol.70 (5), p.780-792</ispartof><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2410-eb8c675e0faf6a0a07e7f2a93c7264d928b23ff1277900277db3086cc869bc7a3</citedby><cites>FETCH-LOGICAL-c2410-eb8c675e0faf6a0a07e7f2a93c7264d928b23ff1277900277db3086cc869bc7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.201810210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.201810210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dolgikh, Olga</creatorcontrib><creatorcontrib>Simillion, Hans</creatorcontrib><creatorcontrib>Lamaka, Sviatlana V.</creatorcontrib><creatorcontrib>Bastos, Alexandre C.</creatorcontrib><creatorcontrib>Xue, Huibin B.</creatorcontrib><creatorcontrib>Taryba, Maryna G.</creatorcontrib><creatorcontrib>Oliveira, Andre R.</creatorcontrib><creatorcontrib>Allély, Christian</creatorcontrib><creatorcontrib>Van Den Bossche, Bart</creatorcontrib><creatorcontrib>Van Den Bergh, Krista</creatorcontrib><creatorcontrib>De Strycker, Joost</creatorcontrib><creatorcontrib>Deconinck, Johan</creatorcontrib><title>Corrosion protection of steel cut‐edges by hot‐dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part II. Numerical simulations</title><title>Materials and corrosion</title><description>In this paper a mechanistic model is elaborated to simulate the corrosion behavior of aluminum–zinc–magnesium coatings on steel. The model is based on the mass transport and reactions of the ions in the electrolyte (MITReM). The finite element method has been used, which allows to perform time‐dependent simulations with micrometer scale to study local corrosion effects. The formation of corrosion products and the prediction of electrolyte concentration distributions are compared for different metallic coating compositions. The spatial and temporal simulation of complex precipitates provides an additional tool to validate the model through corrosion product characterization. The simulation results are compared to experimental observations, presented in part I of this paper. The MITReM simulations are limited to the micro‐scale and therefore to small geometries. A link is made with the potential model which can be applied on macro‐scale objects. A qualitative agreement is found between the simulations at both scales and the experiments. Further quantification of this model would optimize the simulations for material design and for predictive maintenance. A mechanistic model for cut‐edge corrosion is developed and validated. The numerical experiments complement the experimental work (presented in part I of this work) and predict pH distribution, corrosion currents, ion distributions, and the precipitation of corrosion products. Both time dependent and spatially resolved results confirm the limited protection of the substrate by the formed corrosion products.</description><subject>Al(Zn Mg) alloys</subject><subject>cut‐edge corrosion</subject><subject>multi‐ion modeling</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMntBAokEn5PGCVsV8VGpHwywsESOYwcjJ67ilKpMHVjY-I39JTQqgpHp7qT3udM9CJ0C8YEQelVxYX1KIAZCgeyhHgwoeCGwaB_1SBIybwDADtGRc6-EACRB2EMfqW0a67St8byxrRRt11qFXSulwWLRbtZfsiilw_kKv9huLPQcl9y88Vq_ywIPzflzfTkpL7CwvNV16bCuMWzWn8v2DE95aq7xA29aPBr5eLqoZKMFN9jpamF4d84dowPFjZMnP7WPnm5vHtN7bzy7G6XDsSdoCMSTeSwiNpBEcRVxwgmTTFGeBILRKCwSGuc0UAooY8lWCGNFHpA4EiKOklwwHvSRv9srti-7Rqps3uiKN6sMSNY5zDqH2a_DLZDsgKU2cvVPOpsM09kf-w0tkHk7</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Dolgikh, Olga</creator><creator>Simillion, Hans</creator><creator>Lamaka, Sviatlana V.</creator><creator>Bastos, Alexandre C.</creator><creator>Xue, Huibin B.</creator><creator>Taryba, Maryna G.</creator><creator>Oliveira, Andre R.</creator><creator>Allély, Christian</creator><creator>Van Den Bossche, Bart</creator><creator>Van Den Bergh, Krista</creator><creator>De Strycker, Joost</creator><creator>Deconinck, Johan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201905</creationdate><title>Corrosion protection of steel cut‐edges by hot‐dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part II. Numerical simulations</title><author>Dolgikh, Olga ; Simillion, Hans ; Lamaka, Sviatlana V. ; Bastos, Alexandre C. ; Xue, Huibin B. ; Taryba, Maryna G. ; Oliveira, Andre R. ; Allély, Christian ; Van Den Bossche, Bart ; Van Den Bergh, Krista ; De Strycker, Joost ; Deconinck, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2410-eb8c675e0faf6a0a07e7f2a93c7264d928b23ff1277900277db3086cc869bc7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Al(Zn Mg) alloys</topic><topic>cut‐edge corrosion</topic><topic>multi‐ion modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgikh, Olga</creatorcontrib><creatorcontrib>Simillion, Hans</creatorcontrib><creatorcontrib>Lamaka, Sviatlana V.</creatorcontrib><creatorcontrib>Bastos, Alexandre C.</creatorcontrib><creatorcontrib>Xue, Huibin B.</creatorcontrib><creatorcontrib>Taryba, Maryna G.</creatorcontrib><creatorcontrib>Oliveira, Andre R.</creatorcontrib><creatorcontrib>Allély, Christian</creatorcontrib><creatorcontrib>Van Den Bossche, Bart</creatorcontrib><creatorcontrib>Van Den Bergh, Krista</creatorcontrib><creatorcontrib>De Strycker, Joost</creatorcontrib><creatorcontrib>Deconinck, Johan</creatorcontrib><collection>CrossRef</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgikh, Olga</au><au>Simillion, Hans</au><au>Lamaka, Sviatlana V.</au><au>Bastos, Alexandre C.</au><au>Xue, Huibin B.</au><au>Taryba, Maryna G.</au><au>Oliveira, Andre R.</au><au>Allély, Christian</au><au>Van Den Bossche, Bart</au><au>Van Den Bergh, Krista</au><au>De Strycker, Joost</au><au>Deconinck, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion protection of steel cut‐edges by hot‐dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part II. Numerical simulations</atitle><jtitle>Materials and corrosion</jtitle><date>2019-05</date><risdate>2019</risdate><volume>70</volume><issue>5</issue><spage>780</spage><epage>792</epage><pages>780-792</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><abstract>In this paper a mechanistic model is elaborated to simulate the corrosion behavior of aluminum–zinc–magnesium coatings on steel. The model is based on the mass transport and reactions of the ions in the electrolyte (MITReM). The finite element method has been used, which allows to perform time‐dependent simulations with micrometer scale to study local corrosion effects. The formation of corrosion products and the prediction of electrolyte concentration distributions are compared for different metallic coating compositions. The spatial and temporal simulation of complex precipitates provides an additional tool to validate the model through corrosion product characterization. The simulation results are compared to experimental observations, presented in part I of this paper. The MITReM simulations are limited to the micro‐scale and therefore to small geometries. A link is made with the potential model which can be applied on macro‐scale objects. A qualitative agreement is found between the simulations at both scales and the experiments. Further quantification of this model would optimize the simulations for material design and for predictive maintenance. A mechanistic model for cut‐edge corrosion is developed and validated. The numerical experiments complement the experimental work (presented in part I of this work) and predict pH distribution, corrosion currents, ion distributions, and the precipitation of corrosion products. Both time dependent and spatially resolved results confirm the limited protection of the substrate by the formed corrosion products.</abstract><doi>10.1002/maco.201810210</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-5117
ispartof Materials and corrosion, 2019-05, Vol.70 (5), p.780-792
issn 0947-5117
1521-4176
language eng
recordid cdi_crossref_primary_10_1002_maco_201810210
source Wiley Online Library All Journals
subjects Al(Zn Mg) alloys
cut‐edge corrosion
multi‐ion modeling
title Corrosion protection of steel cut‐edges by hot‐dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part II. Numerical simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20protection%20of%20steel%20cut%E2%80%90edges%20by%20hot%E2%80%90dip%20galvanized%20Al(Zn,Mg)%20coatings%20in%201%E2%80%89wt%25%20NaCl:%20Part%20II.%20Numerical%20simulations&rft.jtitle=Materials%20and%20corrosion&rft.au=Dolgikh,%20Olga&rft.date=2019-05&rft.volume=70&rft.issue=5&rft.spage=780&rft.epage=792&rft.pages=780-792&rft.issn=0947-5117&rft.eissn=1521-4176&rft_id=info:doi/10.1002/maco.201810210&rft_dat=%3Cwiley_cross%3EMACO201810210%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true