Highly Intelligent Forward Design of Metamaterials Empowered by Circuit‐Physics‐Driven Deep Learning

The field of advanced metamaterial design has witnessed the great progress of artificial intelligence (AI) for science. Typically, the widely used deep learning is a purely data‐driven approach. However, it is often assumed as a black box performing interpolation among training data in a fuzzy way,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2024-11
Hauptverfasser: Yan, Yiming, Li, Fajun, Shen, Jiaqing, Zhuang, Mingyong, Gao, Yuan, Chen, Wei, Li, Yuyang, Wu, Zhilin, Dong, Zhaogang, Zhu, Jinfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Laser & photonics reviews
container_volume
creator Yan, Yiming
Li, Fajun
Shen, Jiaqing
Zhuang, Mingyong
Gao, Yuan
Chen, Wei
Li, Yuyang
Wu, Zhilin
Dong, Zhaogang
Zhu, Jinfeng
description The field of advanced metamaterial design has witnessed the great progress of artificial intelligence (AI) for science. Typically, the widely used deep learning is a purely data‐driven approach. However, it is often assumed as a black box performing interpolation among training data in a fuzzy way, which suffers from poor generalization outside the training domain of critical physical parameters. Inspired by physics‐guided deep learning, a circuit‐theory‐informed neural network (CTINN) in order to strengthen the generalization of metamaterial design is proposed. A series of plasmonic stack metamaterials (PSMs) are taken as learning paradigms of CTINN. Compared to conventional deep learning, the scheme decreases one‐order lower test loss of spectral prediction beyond the structure training span, and it possesses an extraordinary function to predict spectra of the extrapolated wavelength range. Due to the physics‐informed mechanism, the CTINN only adopts 10% training samples of the pure data‐driven counterpart, while it reduces >50% test loss. Moreover, the CTINN design is used to guide the PSM experiments and demonstrate its great potential for metamaterial development. This work introduces the theory of equivalent circuits into the neural network, empowers physics supervision to AI, and accomplishes the smart and powerful design of PSMs.
doi_str_mv 10.1002/lpor.202400724
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_lpor_202400724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_lpor_202400724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-581e9330317f17838268e3f35e9313ba63b78b33d7b9671a177af655fde2a8773</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhC0EEqWwZe0LpNh-SewsUX9opSBYwDpykufEKE0iO1BlxxE4Y09CKlBnM6ORZhYfIfecLThj4qHpO7cQTISMSRFekBlXMQRKJcnlOSt2TW68_2AsmhTPSL21Vd2MdNcO2DS2wnagm84dtCvpCr2tWtoZ-oyD3usBndWNp-t93x3QYUnzkS6tKz7tcPz-ea1Hbws_pZWzX9hOe-xpitq1tq1uyZWZxnj373Pyvlm_LbdB-vK0Wz6mQcFFOASR4pgAMODScKlAiVghGIimlkOuY8ilygFKmSex5JpLqU0cRaZEoZWUMCeLv9_Cdd47NFnv7F67MeMsO3HKTpyyMyf4BV5oXo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Intelligent Forward Design of Metamaterials Empowered by Circuit‐Physics‐Driven Deep Learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yan, Yiming ; Li, Fajun ; Shen, Jiaqing ; Zhuang, Mingyong ; Gao, Yuan ; Chen, Wei ; Li, Yuyang ; Wu, Zhilin ; Dong, Zhaogang ; Zhu, Jinfeng</creator><creatorcontrib>Yan, Yiming ; Li, Fajun ; Shen, Jiaqing ; Zhuang, Mingyong ; Gao, Yuan ; Chen, Wei ; Li, Yuyang ; Wu, Zhilin ; Dong, Zhaogang ; Zhu, Jinfeng</creatorcontrib><description>The field of advanced metamaterial design has witnessed the great progress of artificial intelligence (AI) for science. Typically, the widely used deep learning is a purely data‐driven approach. However, it is often assumed as a black box performing interpolation among training data in a fuzzy way, which suffers from poor generalization outside the training domain of critical physical parameters. Inspired by physics‐guided deep learning, a circuit‐theory‐informed neural network (CTINN) in order to strengthen the generalization of metamaterial design is proposed. A series of plasmonic stack metamaterials (PSMs) are taken as learning paradigms of CTINN. Compared to conventional deep learning, the scheme decreases one‐order lower test loss of spectral prediction beyond the structure training span, and it possesses an extraordinary function to predict spectra of the extrapolated wavelength range. Due to the physics‐informed mechanism, the CTINN only adopts 10% training samples of the pure data‐driven counterpart, while it reduces &gt;50% test loss. Moreover, the CTINN design is used to guide the PSM experiments and demonstrate its great potential for metamaterial development. This work introduces the theory of equivalent circuits into the neural network, empowers physics supervision to AI, and accomplishes the smart and powerful design of PSMs.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202400724</identifier><language>eng</language><ispartof>Laser &amp; photonics reviews, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-581e9330317f17838268e3f35e9313ba63b78b33d7b9671a177af655fde2a8773</cites><orcidid>0000-0003-3666-6763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yan, Yiming</creatorcontrib><creatorcontrib>Li, Fajun</creatorcontrib><creatorcontrib>Shen, Jiaqing</creatorcontrib><creatorcontrib>Zhuang, Mingyong</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Wu, Zhilin</creatorcontrib><creatorcontrib>Dong, Zhaogang</creatorcontrib><creatorcontrib>Zhu, Jinfeng</creatorcontrib><title>Highly Intelligent Forward Design of Metamaterials Empowered by Circuit‐Physics‐Driven Deep Learning</title><title>Laser &amp; photonics reviews</title><description>The field of advanced metamaterial design has witnessed the great progress of artificial intelligence (AI) for science. Typically, the widely used deep learning is a purely data‐driven approach. However, it is often assumed as a black box performing interpolation among training data in a fuzzy way, which suffers from poor generalization outside the training domain of critical physical parameters. Inspired by physics‐guided deep learning, a circuit‐theory‐informed neural network (CTINN) in order to strengthen the generalization of metamaterial design is proposed. A series of plasmonic stack metamaterials (PSMs) are taken as learning paradigms of CTINN. Compared to conventional deep learning, the scheme decreases one‐order lower test loss of spectral prediction beyond the structure training span, and it possesses an extraordinary function to predict spectra of the extrapolated wavelength range. Due to the physics‐informed mechanism, the CTINN only adopts 10% training samples of the pure data‐driven counterpart, while it reduces &gt;50% test loss. Moreover, the CTINN design is used to guide the PSM experiments and demonstrate its great potential for metamaterial development. This work introduces the theory of equivalent circuits into the neural network, empowers physics supervision to AI, and accomplishes the smart and powerful design of PSMs.</description><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAUhC0EEqWwZe0LpNh-SewsUX9opSBYwDpykufEKE0iO1BlxxE4Y09CKlBnM6ORZhYfIfecLThj4qHpO7cQTISMSRFekBlXMQRKJcnlOSt2TW68_2AsmhTPSL21Vd2MdNcO2DS2wnagm84dtCvpCr2tWtoZ-oyD3usBndWNp-t93x3QYUnzkS6tKz7tcPz-ea1Hbws_pZWzX9hOe-xpitq1tq1uyZWZxnj373Pyvlm_LbdB-vK0Wz6mQcFFOASR4pgAMODScKlAiVghGIimlkOuY8ilygFKmSex5JpLqU0cRaZEoZWUMCeLv9_Cdd47NFnv7F67MeMsO3HKTpyyMyf4BV5oXo8</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Yan, Yiming</creator><creator>Li, Fajun</creator><creator>Shen, Jiaqing</creator><creator>Zhuang, Mingyong</creator><creator>Gao, Yuan</creator><creator>Chen, Wei</creator><creator>Li, Yuyang</creator><creator>Wu, Zhilin</creator><creator>Dong, Zhaogang</creator><creator>Zhu, Jinfeng</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid></search><sort><creationdate>20241119</creationdate><title>Highly Intelligent Forward Design of Metamaterials Empowered by Circuit‐Physics‐Driven Deep Learning</title><author>Yan, Yiming ; Li, Fajun ; Shen, Jiaqing ; Zhuang, Mingyong ; Gao, Yuan ; Chen, Wei ; Li, Yuyang ; Wu, Zhilin ; Dong, Zhaogang ; Zhu, Jinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-581e9330317f17838268e3f35e9313ba63b78b33d7b9671a177af655fde2a8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yiming</creatorcontrib><creatorcontrib>Li, Fajun</creatorcontrib><creatorcontrib>Shen, Jiaqing</creatorcontrib><creatorcontrib>Zhuang, Mingyong</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Wu, Zhilin</creatorcontrib><creatorcontrib>Dong, Zhaogang</creatorcontrib><creatorcontrib>Zhu, Jinfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Yiming</au><au>Li, Fajun</au><au>Shen, Jiaqing</au><au>Zhuang, Mingyong</au><au>Gao, Yuan</au><au>Chen, Wei</au><au>Li, Yuyang</au><au>Wu, Zhilin</au><au>Dong, Zhaogang</au><au>Zhu, Jinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Intelligent Forward Design of Metamaterials Empowered by Circuit‐Physics‐Driven Deep Learning</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2024-11-19</date><risdate>2024</risdate><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>The field of advanced metamaterial design has witnessed the great progress of artificial intelligence (AI) for science. Typically, the widely used deep learning is a purely data‐driven approach. However, it is often assumed as a black box performing interpolation among training data in a fuzzy way, which suffers from poor generalization outside the training domain of critical physical parameters. Inspired by physics‐guided deep learning, a circuit‐theory‐informed neural network (CTINN) in order to strengthen the generalization of metamaterial design is proposed. A series of plasmonic stack metamaterials (PSMs) are taken as learning paradigms of CTINN. Compared to conventional deep learning, the scheme decreases one‐order lower test loss of spectral prediction beyond the structure training span, and it possesses an extraordinary function to predict spectra of the extrapolated wavelength range. Due to the physics‐informed mechanism, the CTINN only adopts 10% training samples of the pure data‐driven counterpart, while it reduces &gt;50% test loss. Moreover, the CTINN design is used to guide the PSM experiments and demonstrate its great potential for metamaterial development. This work introduces the theory of equivalent circuits into the neural network, empowers physics supervision to AI, and accomplishes the smart and powerful design of PSMs.</abstract><doi>10.1002/lpor.202400724</doi><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2024-11
issn 1863-8880
1863-8899
language eng
recordid cdi_crossref_primary_10_1002_lpor_202400724
source Wiley Online Library Journals Frontfile Complete
title Highly Intelligent Forward Design of Metamaterials Empowered by Circuit‐Physics‐Driven Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Intelligent%20Forward%20Design%20of%20Metamaterials%20Empowered%20by%20Circuit%E2%80%90Physics%E2%80%90Driven%20Deep%20Learning&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Yan,%20Yiming&rft.date=2024-11-19&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202400724&rft_dat=%3Ccrossref%3E10_1002_lpor_202400724%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true