Third generation photovoltaics

We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2009-07, Vol.3 (4), p.394-405
Hauptverfasser: Brown, G.F., Wu, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 4
container_start_page 394
container_title Laser & photonics reviews
container_volume 3
creator Brown, G.F.
Wu, J.
description We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell. We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.
doi_str_mv 10.1002/lpor.200810039
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_lpor_200810039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_BRWKSHMT_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</originalsourceid><addsrcrecordid>eNqFjz1PwzAQhi0EEqWwMqIujAlnx58jVNAiCkWlqKNlHIcaQhPZEdB_T6qgiI0b7kv3vKcXoVMMKQYgF2VdhZQAyHbK1B4aYMmzREql9vtewiE6ivENgLXBB-hsufYhH726jQum8dVmVK-rpvqsysZ4G4_RQWHK6E5-6xA931wvx9NkNp_cji9niaU8Uwl-kZxxAVIUWAgmGbaUOs4By0JAzjAoTtpsCclzSywtWG5ou88AU6VsNkRpp2tDFWNwha6D_zBhqzHonTu9c6d7dy1w3gG1idaURTAb62NPEcw5UQzaO9XdffnSbf9R1bPH-eLvj6RjfWzcd8-a8K65yATTq4eJvlqs7p6m90tNsx-CsW4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Third generation photovoltaics</title><source>Wiley Online Library Journals</source><creator>Brown, G.F. ; Wu, J.</creator><creatorcontrib>Brown, G.F. ; Wu, J.</creatorcontrib><description>We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell. We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.200810039</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states ; Electronic transport in condensed matter ; energy up/down conversion ; energy-selective contacts ; Exact sciences and technology ; Excitons and related phenomena ; hot-carrier solar cells ; multi-exciton generation ; multi-junction solar cells ; Photoconduction and photovoltaic effects; photodielectric effects ; Photovoltaics ; Physics</subject><ispartof>Laser &amp; photonics reviews, 2009-07, Vol.3 (4), p.394-405</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</citedby><cites>FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.200810039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.200810039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21662950$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, G.F.</creatorcontrib><creatorcontrib>Wu, J.</creatorcontrib><title>Third generation photovoltaics</title><title>Laser &amp; photonics reviews</title><addtitle>Laser &amp; Photon. Rev</addtitle><description>We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell. We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states</subject><subject>Electronic transport in condensed matter</subject><subject>energy up/down conversion</subject><subject>energy-selective contacts</subject><subject>Exact sciences and technology</subject><subject>Excitons and related phenomena</subject><subject>hot-carrier solar cells</subject><subject>multi-exciton generation</subject><subject>multi-junction solar cells</subject><subject>Photoconduction and photovoltaic effects; photodielectric effects</subject><subject>Photovoltaics</subject><subject>Physics</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAQhi0EEqWwMqIujAlnx58jVNAiCkWlqKNlHIcaQhPZEdB_T6qgiI0b7kv3vKcXoVMMKQYgF2VdhZQAyHbK1B4aYMmzREql9vtewiE6ivENgLXBB-hsufYhH726jQum8dVmVK-rpvqsysZ4G4_RQWHK6E5-6xA931wvx9NkNp_cji9niaU8Uwl-kZxxAVIUWAgmGbaUOs4By0JAzjAoTtpsCclzSywtWG5ou88AU6VsNkRpp2tDFWNwha6D_zBhqzHonTu9c6d7dy1w3gG1idaURTAb62NPEcw5UQzaO9XdffnSbf9R1bPH-eLvj6RjfWzcd8-a8K65yATTq4eJvlqs7p6m90tNsx-CsW4I</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Brown, G.F.</creator><creator>Wu, J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200907</creationdate><title>Third generation photovoltaics</title><author>Brown, G.F. ; Wu, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states</topic><topic>Electronic transport in condensed matter</topic><topic>energy up/down conversion</topic><topic>energy-selective contacts</topic><topic>Exact sciences and technology</topic><topic>Excitons and related phenomena</topic><topic>hot-carrier solar cells</topic><topic>multi-exciton generation</topic><topic>multi-junction solar cells</topic><topic>Photoconduction and photovoltaic effects; photodielectric effects</topic><topic>Photovoltaics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, G.F.</creatorcontrib><creatorcontrib>Wu, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, G.F.</au><au>Wu, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Third generation photovoltaics</atitle><jtitle>Laser &amp; photonics reviews</jtitle><addtitle>Laser &amp; Photon. Rev</addtitle><date>2009-07</date><risdate>2009</risdate><volume>3</volume><issue>4</issue><spage>394</spage><epage>405</epage><pages>394-405</pages><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell. We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/lpor.200810039</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2009-07, Vol.3 (4), p.394-405
issn 1863-8880
1863-8899
language eng
recordid cdi_crossref_primary_10_1002_lpor_200810039
source Wiley Online Library Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron states
Electronic transport in condensed matter
energy up/down conversion
energy-selective contacts
Exact sciences and technology
Excitons and related phenomena
hot-carrier solar cells
multi-exciton generation
multi-junction solar cells
Photoconduction and photovoltaic effects
photodielectric effects
Photovoltaics
Physics
title Third generation photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Third%20generation%20photovoltaics&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Brown,%20G.F.&rft.date=2009-07&rft.volume=3&rft.issue=4&rft.spage=394&rft.epage=405&rft.pages=394-405&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.200810039&rft_dat=%3Cistex_cross%3Eark_67375_WNG_BRWKSHMT_4%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true