Third generation photovoltaics
We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selec...
Gespeichert in:
Veröffentlicht in: | Laser & photonics reviews 2009-07, Vol.3 (4), p.394-405 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 4 |
container_start_page | 394 |
container_title | Laser & photonics reviews |
container_volume | 3 |
creator | Brown, G.F. Wu, J. |
description | We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.
We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell. |
doi_str_mv | 10.1002/lpor.200810039 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_lpor_200810039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_BRWKSHMT_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</originalsourceid><addsrcrecordid>eNqFjz1PwzAQhi0EEqWwMqIujAlnx58jVNAiCkWlqKNlHIcaQhPZEdB_T6qgiI0b7kv3vKcXoVMMKQYgF2VdhZQAyHbK1B4aYMmzREql9vtewiE6ivENgLXBB-hsufYhH726jQum8dVmVK-rpvqsysZ4G4_RQWHK6E5-6xA931wvx9NkNp_cji9niaU8Uwl-kZxxAVIUWAgmGbaUOs4By0JAzjAoTtpsCclzSywtWG5ou88AU6VsNkRpp2tDFWNwha6D_zBhqzHonTu9c6d7dy1w3gG1idaURTAb62NPEcw5UQzaO9XdffnSbf9R1bPH-eLvj6RjfWzcd8-a8K65yATTq4eJvlqs7p6m90tNsx-CsW4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Third generation photovoltaics</title><source>Wiley Online Library Journals</source><creator>Brown, G.F. ; Wu, J.</creator><creatorcontrib>Brown, G.F. ; Wu, J.</creatorcontrib><description>We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.
We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.200810039</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states ; Electronic transport in condensed matter ; energy up/down conversion ; energy-selective contacts ; Exact sciences and technology ; Excitons and related phenomena ; hot-carrier solar cells ; multi-exciton generation ; multi-junction solar cells ; Photoconduction and photovoltaic effects; photodielectric effects ; Photovoltaics ; Physics</subject><ispartof>Laser & photonics reviews, 2009-07, Vol.3 (4), p.394-405</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</citedby><cites>FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.200810039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.200810039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21662950$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, G.F.</creatorcontrib><creatorcontrib>Wu, J.</creatorcontrib><title>Third generation photovoltaics</title><title>Laser & photonics reviews</title><addtitle>Laser & Photon. Rev</addtitle><description>We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.
We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states</subject><subject>Electronic transport in condensed matter</subject><subject>energy up/down conversion</subject><subject>energy-selective contacts</subject><subject>Exact sciences and technology</subject><subject>Excitons and related phenomena</subject><subject>hot-carrier solar cells</subject><subject>multi-exciton generation</subject><subject>multi-junction solar cells</subject><subject>Photoconduction and photovoltaic effects; photodielectric effects</subject><subject>Photovoltaics</subject><subject>Physics</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAQhi0EEqWwMqIujAlnx58jVNAiCkWlqKNlHIcaQhPZEdB_T6qgiI0b7kv3vKcXoVMMKQYgF2VdhZQAyHbK1B4aYMmzREql9vtewiE6ivENgLXBB-hsufYhH726jQum8dVmVK-rpvqsysZ4G4_RQWHK6E5-6xA931wvx9NkNp_cji9niaU8Uwl-kZxxAVIUWAgmGbaUOs4By0JAzjAoTtpsCclzSywtWG5ou88AU6VsNkRpp2tDFWNwha6D_zBhqzHonTu9c6d7dy1w3gG1idaURTAb62NPEcw5UQzaO9XdffnSbf9R1bPH-eLvj6RjfWzcd8-a8K65yATTq4eJvlqs7p6m90tNsx-CsW4I</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Brown, G.F.</creator><creator>Wu, J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200907</creationdate><title>Third generation photovoltaics</title><author>Brown, G.F. ; Wu, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4639-1b86567087f1775851c44e66018f70d510962510c22ddc2c4f5da4d51301499c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states</topic><topic>Electronic transport in condensed matter</topic><topic>energy up/down conversion</topic><topic>energy-selective contacts</topic><topic>Exact sciences and technology</topic><topic>Excitons and related phenomena</topic><topic>hot-carrier solar cells</topic><topic>multi-exciton generation</topic><topic>multi-junction solar cells</topic><topic>Photoconduction and photovoltaic effects; photodielectric effects</topic><topic>Photovoltaics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, G.F.</creatorcontrib><creatorcontrib>Wu, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, G.F.</au><au>Wu, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Third generation photovoltaics</atitle><jtitle>Laser & photonics reviews</jtitle><addtitle>Laser & Photon. Rev</addtitle><date>2009-07</date><risdate>2009</risdate><volume>3</volume><issue>4</issue><spage>394</spage><epage>405</epage><pages>394-405</pages><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.
We review recent progress towards increasing solar cell efficiencies beyond the Shockley‐Queisser efficiency limit. Four main approaches are highlighted: multi‐junction cells, intermediate‐band cells, hot carrier cells and spectrum conversion. Multi‐junction cells use multiple solar cells that selectively absorb different regions of the solar spectrum. Intermediate‐band cells use one junction with multiple bandgaps to increase efficiencies. Hot‐carrier cells convert the excess energy of above‐bandgap photons into electrical energy. Spectrum conversion solar cells convert the incoming polychromatic sunlight into a narrower distribution of photons suited to the bandgap of the solar cell.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/lpor.200810039</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2009-07, Vol.3 (4), p.394-405 |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_crossref_primary_10_1002_lpor_200810039 |
source | Wiley Online Library Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Electron states Electronic transport in condensed matter energy up/down conversion energy-selective contacts Exact sciences and technology Excitons and related phenomena hot-carrier solar cells multi-exciton generation multi-junction solar cells Photoconduction and photovoltaic effects photodielectric effects Photovoltaics Physics |
title | Third generation photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Third%20generation%20photovoltaics&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Brown,%20G.F.&rft.date=2009-07&rft.volume=3&rft.issue=4&rft.spage=394&rft.epage=405&rft.pages=394-405&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.200810039&rft_dat=%3Cistex_cross%3Eark_67375_WNG_BRWKSHMT_4%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |