The influence of dynamic resources and stable isotope incorporation rates on aquatic consumer trophic position estimation

A key assumption in trophic position (TP) estimation using stable isotope analysis is that consumers are in isotopic equilibrium with their resources. Here, we assess the degree to which time‐varying resource dynamics and isotope incorporation rates of consumers influence consumer TP estimates acros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography, methods methods, 2024-03, Vol.22 (3), p.119-134
Hauptverfasser: Feddern, Megan L., Nielsen, Jens M., Essington, Timothy E., Holtgrieve, Gordon W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 3
container_start_page 119
container_title Limnology and oceanography, methods
container_volume 22
creator Feddern, Megan L.
Nielsen, Jens M.
Essington, Timothy E.
Holtgrieve, Gordon W.
description A key assumption in trophic position (TP) estimation using stable isotope analysis is that consumers are in isotopic equilibrium with their resources. Here, we assess the degree to which time‐varying resource dynamics and isotope incorporation rates of consumers influence consumer TP estimates across multiple trophic levels and aquatic ecosystems. We constructed a first‐order kinetics model to explore consumer stable isotope incorporation rates and modeled the effect on TP calculations using bulk and compound‐specific stable isotope data from previous experimental and observational studies. We found TP estimates of higher trophic level consumers are less accurate than lower trophic level consumers when applying bulk stable isotope analysis (BSIA) and using particulate organic matter as the stable isotope baseline. The accuracy of TP estimates depended on the time‐varying dynamics of the stable isotope baseline. Tertiary consumers had the highest TP estimation error, and this error was not eliminated by sampling tissues with fast incorporation rates (i.e., blood) in the tertiary consumer. Compound‐specific stable isotope analysis (CSIA) of individual amino acids was more accurate in estimating TP for all consumers and ecosystems compared to BSIA. Our analysis confirms that consideration for the dynamic nature of stable isotope ratios is necessary for accurate TP estimates. Finally, we show how first‐order kinetics models can provide a useful framework for integrating prey and consumer incorporation rates in stable isotope studies to improve TP estimates.
doi_str_mv 10.1002/lom3.10595
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_lom3_10595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>LOM310595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2325-169cc7f196dd730947226fc764f7065d2d9aa20a0c5c31fa95df7cfaab9a6e823</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsXP0HOwmqSbZLmKMV_UOmlnpfXl4Su7G7WZBfZb2_aevDk6Q3Dbx7DEHLL2T1nTDw0oS2zkkaekRmXC17IpVTnf_QluUrpM7NmofWMTNu9o3Xnm9F16Gjw1E4dtDXS6FIYI7pEobM0DbBrMpnCEPpDAkPsQ4ShDh3NJ2NZwNeYHaQYujS2LtIhhn6fjT6k-oi6NNTtMXVNLjw0yd383jn5eH7arl6L9eblbfW4LlCUQhZcGUTtuVHW6pLl1kIoj1otvGZKWmENgGDAUGLJPRhpvUYPsDOg3FKUc3J3-osxpBSdr_qYK8Sp4qw6jFYdRquOo2WYn-DvunHTP2S13ryXp8wPtS9yuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The influence of dynamic resources and stable isotope incorporation rates on aquatic consumer trophic position estimation</title><source>Access via Wiley Online Library</source><creator>Feddern, Megan L. ; Nielsen, Jens M. ; Essington, Timothy E. ; Holtgrieve, Gordon W.</creator><creatorcontrib>Feddern, Megan L. ; Nielsen, Jens M. ; Essington, Timothy E. ; Holtgrieve, Gordon W.</creatorcontrib><description>A key assumption in trophic position (TP) estimation using stable isotope analysis is that consumers are in isotopic equilibrium with their resources. Here, we assess the degree to which time‐varying resource dynamics and isotope incorporation rates of consumers influence consumer TP estimates across multiple trophic levels and aquatic ecosystems. We constructed a first‐order kinetics model to explore consumer stable isotope incorporation rates and modeled the effect on TP calculations using bulk and compound‐specific stable isotope data from previous experimental and observational studies. We found TP estimates of higher trophic level consumers are less accurate than lower trophic level consumers when applying bulk stable isotope analysis (BSIA) and using particulate organic matter as the stable isotope baseline. The accuracy of TP estimates depended on the time‐varying dynamics of the stable isotope baseline. Tertiary consumers had the highest TP estimation error, and this error was not eliminated by sampling tissues with fast incorporation rates (i.e., blood) in the tertiary consumer. Compound‐specific stable isotope analysis (CSIA) of individual amino acids was more accurate in estimating TP for all consumers and ecosystems compared to BSIA. Our analysis confirms that consideration for the dynamic nature of stable isotope ratios is necessary for accurate TP estimates. Finally, we show how first‐order kinetics models can provide a useful framework for integrating prey and consumer incorporation rates in stable isotope studies to improve TP estimates.</description><identifier>ISSN: 1541-5856</identifier><identifier>EISSN: 1541-5856</identifier><identifier>DOI: 10.1002/lom3.10595</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><ispartof>Limnology and oceanography, methods, 2024-03, Vol.22 (3), p.119-134</ispartof><rights>2023 Association for the Sciences of Limnology and Oceanography.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2325-169cc7f196dd730947226fc764f7065d2d9aa20a0c5c31fa95df7cfaab9a6e823</cites><orcidid>0000-0002-4451-3567 ; 0000-0002-5863-7229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flom3.10595$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flom3.10595$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Feddern, Megan L.</creatorcontrib><creatorcontrib>Nielsen, Jens M.</creatorcontrib><creatorcontrib>Essington, Timothy E.</creatorcontrib><creatorcontrib>Holtgrieve, Gordon W.</creatorcontrib><title>The influence of dynamic resources and stable isotope incorporation rates on aquatic consumer trophic position estimation</title><title>Limnology and oceanography, methods</title><description>A key assumption in trophic position (TP) estimation using stable isotope analysis is that consumers are in isotopic equilibrium with their resources. Here, we assess the degree to which time‐varying resource dynamics and isotope incorporation rates of consumers influence consumer TP estimates across multiple trophic levels and aquatic ecosystems. We constructed a first‐order kinetics model to explore consumer stable isotope incorporation rates and modeled the effect on TP calculations using bulk and compound‐specific stable isotope data from previous experimental and observational studies. We found TP estimates of higher trophic level consumers are less accurate than lower trophic level consumers when applying bulk stable isotope analysis (BSIA) and using particulate organic matter as the stable isotope baseline. The accuracy of TP estimates depended on the time‐varying dynamics of the stable isotope baseline. Tertiary consumers had the highest TP estimation error, and this error was not eliminated by sampling tissues with fast incorporation rates (i.e., blood) in the tertiary consumer. Compound‐specific stable isotope analysis (CSIA) of individual amino acids was more accurate in estimating TP for all consumers and ecosystems compared to BSIA. Our analysis confirms that consideration for the dynamic nature of stable isotope ratios is necessary for accurate TP estimates. Finally, we show how first‐order kinetics models can provide a useful framework for integrating prey and consumer incorporation rates in stable isotope studies to improve TP estimates.</description><issn>1541-5856</issn><issn>1541-5856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsXP0HOwmqSbZLmKMV_UOmlnpfXl4Su7G7WZBfZb2_aevDk6Q3Dbx7DEHLL2T1nTDw0oS2zkkaekRmXC17IpVTnf_QluUrpM7NmofWMTNu9o3Xnm9F16Gjw1E4dtDXS6FIYI7pEobM0DbBrMpnCEPpDAkPsQ4ShDh3NJ2NZwNeYHaQYujS2LtIhhn6fjT6k-oi6NNTtMXVNLjw0yd383jn5eH7arl6L9eblbfW4LlCUQhZcGUTtuVHW6pLl1kIoj1otvGZKWmENgGDAUGLJPRhpvUYPsDOg3FKUc3J3-osxpBSdr_qYK8Sp4qw6jFYdRquOo2WYn-DvunHTP2S13ryXp8wPtS9yuQ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Feddern, Megan L.</creator><creator>Nielsen, Jens M.</creator><creator>Essington, Timothy E.</creator><creator>Holtgrieve, Gordon W.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4451-3567</orcidid><orcidid>https://orcid.org/0000-0002-5863-7229</orcidid></search><sort><creationdate>202403</creationdate><title>The influence of dynamic resources and stable isotope incorporation rates on aquatic consumer trophic position estimation</title><author>Feddern, Megan L. ; Nielsen, Jens M. ; Essington, Timothy E. ; Holtgrieve, Gordon W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2325-169cc7f196dd730947226fc764f7065d2d9aa20a0c5c31fa95df7cfaab9a6e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feddern, Megan L.</creatorcontrib><creatorcontrib>Nielsen, Jens M.</creatorcontrib><creatorcontrib>Essington, Timothy E.</creatorcontrib><creatorcontrib>Holtgrieve, Gordon W.</creatorcontrib><collection>CrossRef</collection><jtitle>Limnology and oceanography, methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feddern, Megan L.</au><au>Nielsen, Jens M.</au><au>Essington, Timothy E.</au><au>Holtgrieve, Gordon W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of dynamic resources and stable isotope incorporation rates on aquatic consumer trophic position estimation</atitle><jtitle>Limnology and oceanography, methods</jtitle><date>2024-03</date><risdate>2024</risdate><volume>22</volume><issue>3</issue><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>1541-5856</issn><eissn>1541-5856</eissn><abstract>A key assumption in trophic position (TP) estimation using stable isotope analysis is that consumers are in isotopic equilibrium with their resources. Here, we assess the degree to which time‐varying resource dynamics and isotope incorporation rates of consumers influence consumer TP estimates across multiple trophic levels and aquatic ecosystems. We constructed a first‐order kinetics model to explore consumer stable isotope incorporation rates and modeled the effect on TP calculations using bulk and compound‐specific stable isotope data from previous experimental and observational studies. We found TP estimates of higher trophic level consumers are less accurate than lower trophic level consumers when applying bulk stable isotope analysis (BSIA) and using particulate organic matter as the stable isotope baseline. The accuracy of TP estimates depended on the time‐varying dynamics of the stable isotope baseline. Tertiary consumers had the highest TP estimation error, and this error was not eliminated by sampling tissues with fast incorporation rates (i.e., blood) in the tertiary consumer. Compound‐specific stable isotope analysis (CSIA) of individual amino acids was more accurate in estimating TP for all consumers and ecosystems compared to BSIA. Our analysis confirms that consideration for the dynamic nature of stable isotope ratios is necessary for accurate TP estimates. Finally, we show how first‐order kinetics models can provide a useful framework for integrating prey and consumer incorporation rates in stable isotope studies to improve TP estimates.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/lom3.10595</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4451-3567</orcidid><orcidid>https://orcid.org/0000-0002-5863-7229</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1541-5856
ispartof Limnology and oceanography, methods, 2024-03, Vol.22 (3), p.119-134
issn 1541-5856
1541-5856
language eng
recordid cdi_crossref_primary_10_1002_lom3_10595
source Access via Wiley Online Library
title The influence of dynamic resources and stable isotope incorporation rates on aquatic consumer trophic position estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20dynamic%20resources%20and%20stable%20isotope%20incorporation%20rates%20on%20aquatic%20consumer%20trophic%20position%20estimation&rft.jtitle=Limnology%20and%20oceanography,%20methods&rft.au=Feddern,%20Megan%20L.&rft.date=2024-03&rft.volume=22&rft.issue=3&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=1541-5856&rft.eissn=1541-5856&rft_id=info:doi/10.1002/lom3.10595&rft_dat=%3Cwiley_cross%3ELOM310595%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true