Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes

Northern high-latitude lakes are undergoing climate-induced changes including shifts in their hydrologic connectivity with terrestrial ecosystems. How this will impact dissolved organic matter (DOM) biogeochemistry remains uncertain. We examined the drivers of DOM composition for lakes in the Yukon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography 2020-08, Vol.65 (8), p.1764-1780
Hauptverfasser: Johnston, Sarah Ellen, Striegl, Robert G., Bogard, Matthew J., Dornblaser, Mark M., Butman, David E., Kellerman, Anne M., Wickland, Kimberly P., Podgorski, David C., Spencer, Robert G. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1780
container_issue 8
container_start_page 1764
container_title Limnology and oceanography
container_volume 65
creator Johnston, Sarah Ellen
Striegl, Robert G.
Bogard, Matthew J.
Dornblaser, Mark M.
Butman, David E.
Kellerman, Anne M.
Wickland, Kimberly P.
Podgorski, David C.
Spencer, Robert G. M.
description Northern high-latitude lakes are undergoing climate-induced changes including shifts in their hydrologic connectivity with terrestrial ecosystems. How this will impact dissolved organic matter (DOM) biogeochemistry remains uncertain. We examined the drivers of DOM composition for lakes in the Yukon Flats Basin in Alaska, an arid region of low relief that is characteristic of over one-quarter of circumpolar lake area. Utilizing the vascular plant biomarker lignin, chromophoric dissolved organic matter (CDOM), and ultrahigh-resolution mass spectrometry, we interpreted DOM compositional changes using lake-water stable isotope (δ18O-H₂O) composition as a proxy for lake hydrologic connectivity with the landscape. We observed a relative decrease in CDOM in more hydrologically isolated lakes (enriched δ18O-H₂O) without a corresponding decrease in dissolved organic carbon (DOC) concentration. Although DOC and CDOM were weakly correlated, a significant positive relationship between lignin and CDOM (r² = 0.67) demonstrates that optical parameters are useful for estimating lignin concentration and thus vascular plant contribution to lake DOM. Indicators of allochthonous DOM, including lignin carbon normalized yields, CDOM aromaticity proxies, and relative abundances of polyphenolic and condensed aromatic compound classes, were negatively correlated with δ18O-H₂O (r² > 0.45), suggesting there is little allochthonous DOM supplied to many of these hydrologically isolated lakes. We conclude that decreased lake hydrologic connectivity, driven by ongoing climate change (i.e., decreased precipitation, warming temperatures), will reduce allochthonous DOM contributions and shift lakes toward lower CDOM systems with ecosystem-scale ramifications for heat transfer, photochemical reactions, productivity, and ultimately their biogeochemical function.
doi_str_mv 10.1002/lno.11417
format Article
fullrecord <record><control><sourceid>jstor_JFNAL</sourceid><recordid>TN_cdi_crossref_primary_10_1002_lno_11417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26938155</jstor_id><sourcerecordid>26938155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2917-2c58698565b930ef2b3548b626df6e95e6d6585a88aa020b5f2c07bf0d19abc43</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUw8AFIXhnS2k7sxiOqgCJVdIE5cuyXxG1qI9sU5e8JFNiY3pXuOW-4CF1TMqOEsHnv_IzSgi5O0ITKXGacS3KKJmNXZPmYz9FFjFtCiOScT9BuNZjge99ajbV3DnSyB5sGbCBB2FsHERsbo-8PYLAPrXIjuVdpbHFtfQted7C3MYUBW4edD6mD4HBn2y7rVbLp3QDu1Q7iJTprVB_h6udO0evD_ctyla03j0_Lu3WmmaSLjGleCllywWuZE2hYnfOirAUTphEgOQgjeMlVWSpFGKl5wzRZ1A0xVKpaF_kU3R7_6uBjDNBUb8HuVRgqSqqvlapxpep7pZGdH9kP28PwP1itnze_xs3R2Mbkw5_BhMxLynn-CW9wde8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes</title><source>JSTOR Open Access Journals</source><creator>Johnston, Sarah Ellen ; Striegl, Robert G. ; Bogard, Matthew J. ; Dornblaser, Mark M. ; Butman, David E. ; Kellerman, Anne M. ; Wickland, Kimberly P. ; Podgorski, David C. ; Spencer, Robert G. M.</creator><creatorcontrib>Johnston, Sarah Ellen ; Striegl, Robert G. ; Bogard, Matthew J. ; Dornblaser, Mark M. ; Butman, David E. ; Kellerman, Anne M. ; Wickland, Kimberly P. ; Podgorski, David C. ; Spencer, Robert G. M.</creatorcontrib><description>Northern high-latitude lakes are undergoing climate-induced changes including shifts in their hydrologic connectivity with terrestrial ecosystems. How this will impact dissolved organic matter (DOM) biogeochemistry remains uncertain. We examined the drivers of DOM composition for lakes in the Yukon Flats Basin in Alaska, an arid region of low relief that is characteristic of over one-quarter of circumpolar lake area. Utilizing the vascular plant biomarker lignin, chromophoric dissolved organic matter (CDOM), and ultrahigh-resolution mass spectrometry, we interpreted DOM compositional changes using lake-water stable isotope (δ18O-H₂O) composition as a proxy for lake hydrologic connectivity with the landscape. We observed a relative decrease in CDOM in more hydrologically isolated lakes (enriched δ18O-H₂O) without a corresponding decrease in dissolved organic carbon (DOC) concentration. Although DOC and CDOM were weakly correlated, a significant positive relationship between lignin and CDOM (r² = 0.67) demonstrates that optical parameters are useful for estimating lignin concentration and thus vascular plant contribution to lake DOM. Indicators of allochthonous DOM, including lignin carbon normalized yields, CDOM aromaticity proxies, and relative abundances of polyphenolic and condensed aromatic compound classes, were negatively correlated with δ18O-H₂O (r² &gt; 0.45), suggesting there is little allochthonous DOM supplied to many of these hydrologically isolated lakes. We conclude that decreased lake hydrologic connectivity, driven by ongoing climate change (i.e., decreased precipitation, warming temperatures), will reduce allochthonous DOM contributions and shift lakes toward lower CDOM systems with ecosystem-scale ramifications for heat transfer, photochemical reactions, productivity, and ultimately their biogeochemical function.</description><identifier>ISSN: 0024-3590</identifier><identifier>EISSN: 1939-5590</identifier><identifier>DOI: 10.1002/lno.11417</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley and Sons, Inc</publisher><ispartof>Limnology and oceanography, 2020-08, Vol.65 (8), p.1764-1780</ispartof><rights>2020 Association for the Sciences of Limnology and Oceanography</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2917-2c58698565b930ef2b3548b626df6e95e6d6585a88aa020b5f2c07bf0d19abc43</citedby><cites>FETCH-LOGICAL-c2917-2c58698565b930ef2b3548b626df6e95e6d6585a88aa020b5f2c07bf0d19abc43</cites><orcidid>0000-0002-6237-0379 ; 0000-0002-6400-0590 ; 0000-0001-9491-0328 ; 0000-0002-7348-4814 ; 0000-0003-0777-0748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26938155$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26938155$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,25332,27901,27902,45550,45551,46384,46808,54499,54505,57992,58225</link.rule.ids><linktorsrc>$$Uhttps://www.jstor.org/stable/26938155$$EView_record_in_JSTOR$$FView_record_in_$$GJSTOR</linktorsrc></links><search><creatorcontrib>Johnston, Sarah Ellen</creatorcontrib><creatorcontrib>Striegl, Robert G.</creatorcontrib><creatorcontrib>Bogard, Matthew J.</creatorcontrib><creatorcontrib>Dornblaser, Mark M.</creatorcontrib><creatorcontrib>Butman, David E.</creatorcontrib><creatorcontrib>Kellerman, Anne M.</creatorcontrib><creatorcontrib>Wickland, Kimberly P.</creatorcontrib><creatorcontrib>Podgorski, David C.</creatorcontrib><creatorcontrib>Spencer, Robert G. M.</creatorcontrib><title>Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes</title><title>Limnology and oceanography</title><description>Northern high-latitude lakes are undergoing climate-induced changes including shifts in their hydrologic connectivity with terrestrial ecosystems. How this will impact dissolved organic matter (DOM) biogeochemistry remains uncertain. We examined the drivers of DOM composition for lakes in the Yukon Flats Basin in Alaska, an arid region of low relief that is characteristic of over one-quarter of circumpolar lake area. Utilizing the vascular plant biomarker lignin, chromophoric dissolved organic matter (CDOM), and ultrahigh-resolution mass spectrometry, we interpreted DOM compositional changes using lake-water stable isotope (δ18O-H₂O) composition as a proxy for lake hydrologic connectivity with the landscape. We observed a relative decrease in CDOM in more hydrologically isolated lakes (enriched δ18O-H₂O) without a corresponding decrease in dissolved organic carbon (DOC) concentration. Although DOC and CDOM were weakly correlated, a significant positive relationship between lignin and CDOM (r² = 0.67) demonstrates that optical parameters are useful for estimating lignin concentration and thus vascular plant contribution to lake DOM. Indicators of allochthonous DOM, including lignin carbon normalized yields, CDOM aromaticity proxies, and relative abundances of polyphenolic and condensed aromatic compound classes, were negatively correlated with δ18O-H₂O (r² &gt; 0.45), suggesting there is little allochthonous DOM supplied to many of these hydrologically isolated lakes. We conclude that decreased lake hydrologic connectivity, driven by ongoing climate change (i.e., decreased precipitation, warming temperatures), will reduce allochthonous DOM contributions and shift lakes toward lower CDOM systems with ecosystem-scale ramifications for heat transfer, photochemical reactions, productivity, and ultimately their biogeochemical function.</description><issn>0024-3590</issn><issn>1939-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUw8AFIXhnS2k7sxiOqgCJVdIE5cuyXxG1qI9sU5e8JFNiY3pXuOW-4CF1TMqOEsHnv_IzSgi5O0ITKXGacS3KKJmNXZPmYz9FFjFtCiOScT9BuNZjge99ajbV3DnSyB5sGbCBB2FsHERsbo-8PYLAPrXIjuVdpbHFtfQted7C3MYUBW4edD6mD4HBn2y7rVbLp3QDu1Q7iJTprVB_h6udO0evD_ctyla03j0_Lu3WmmaSLjGleCllywWuZE2hYnfOirAUTphEgOQgjeMlVWSpFGKl5wzRZ1A0xVKpaF_kU3R7_6uBjDNBUb8HuVRgqSqqvlapxpep7pZGdH9kP28PwP1itnze_xs3R2Mbkw5_BhMxLynn-CW9wde8</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Johnston, Sarah Ellen</creator><creator>Striegl, Robert G.</creator><creator>Bogard, Matthew J.</creator><creator>Dornblaser, Mark M.</creator><creator>Butman, David E.</creator><creator>Kellerman, Anne M.</creator><creator>Wickland, Kimberly P.</creator><creator>Podgorski, David C.</creator><creator>Spencer, Robert G. M.</creator><general>John Wiley and Sons, Inc</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6237-0379</orcidid><orcidid>https://orcid.org/0000-0002-6400-0590</orcidid><orcidid>https://orcid.org/0000-0001-9491-0328</orcidid><orcidid>https://orcid.org/0000-0002-7348-4814</orcidid><orcidid>https://orcid.org/0000-0003-0777-0748</orcidid></search><sort><creationdate>20200801</creationdate><title>Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes</title><author>Johnston, Sarah Ellen ; Striegl, Robert G. ; Bogard, Matthew J. ; Dornblaser, Mark M. ; Butman, David E. ; Kellerman, Anne M. ; Wickland, Kimberly P. ; Podgorski, David C. ; Spencer, Robert G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2917-2c58698565b930ef2b3548b626df6e95e6d6585a88aa020b5f2c07bf0d19abc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Sarah Ellen</creatorcontrib><creatorcontrib>Striegl, Robert G.</creatorcontrib><creatorcontrib>Bogard, Matthew J.</creatorcontrib><creatorcontrib>Dornblaser, Mark M.</creatorcontrib><creatorcontrib>Butman, David E.</creatorcontrib><creatorcontrib>Kellerman, Anne M.</creatorcontrib><creatorcontrib>Wickland, Kimberly P.</creatorcontrib><creatorcontrib>Podgorski, David C.</creatorcontrib><creatorcontrib>Spencer, Robert G. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Limnology and oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnston, Sarah Ellen</au><au>Striegl, Robert G.</au><au>Bogard, Matthew J.</au><au>Dornblaser, Mark M.</au><au>Butman, David E.</au><au>Kellerman, Anne M.</au><au>Wickland, Kimberly P.</au><au>Podgorski, David C.</au><au>Spencer, Robert G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes</atitle><jtitle>Limnology and oceanography</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>65</volume><issue>8</issue><spage>1764</spage><epage>1780</epage><pages>1764-1780</pages><issn>0024-3590</issn><eissn>1939-5590</eissn><abstract>Northern high-latitude lakes are undergoing climate-induced changes including shifts in their hydrologic connectivity with terrestrial ecosystems. How this will impact dissolved organic matter (DOM) biogeochemistry remains uncertain. We examined the drivers of DOM composition for lakes in the Yukon Flats Basin in Alaska, an arid region of low relief that is characteristic of over one-quarter of circumpolar lake area. Utilizing the vascular plant biomarker lignin, chromophoric dissolved organic matter (CDOM), and ultrahigh-resolution mass spectrometry, we interpreted DOM compositional changes using lake-water stable isotope (δ18O-H₂O) composition as a proxy for lake hydrologic connectivity with the landscape. We observed a relative decrease in CDOM in more hydrologically isolated lakes (enriched δ18O-H₂O) without a corresponding decrease in dissolved organic carbon (DOC) concentration. Although DOC and CDOM were weakly correlated, a significant positive relationship between lignin and CDOM (r² = 0.67) demonstrates that optical parameters are useful for estimating lignin concentration and thus vascular plant contribution to lake DOM. Indicators of allochthonous DOM, including lignin carbon normalized yields, CDOM aromaticity proxies, and relative abundances of polyphenolic and condensed aromatic compound classes, were negatively correlated with δ18O-H₂O (r² &gt; 0.45), suggesting there is little allochthonous DOM supplied to many of these hydrologically isolated lakes. We conclude that decreased lake hydrologic connectivity, driven by ongoing climate change (i.e., decreased precipitation, warming temperatures), will reduce allochthonous DOM contributions and shift lakes toward lower CDOM systems with ecosystem-scale ramifications for heat transfer, photochemical reactions, productivity, and ultimately their biogeochemical function.</abstract><cop>Hoboken, USA</cop><pub>John Wiley and Sons, Inc</pub><doi>10.1002/lno.11417</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6237-0379</orcidid><orcidid>https://orcid.org/0000-0002-6400-0590</orcidid><orcidid>https://orcid.org/0000-0001-9491-0328</orcidid><orcidid>https://orcid.org/0000-0002-7348-4814</orcidid><orcidid>https://orcid.org/0000-0003-0777-0748</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0024-3590
ispartof Limnology and oceanography, 2020-08, Vol.65 (8), p.1764-1780
issn 0024-3590
1939-5590
language eng
recordid cdi_crossref_primary_10_1002_lno_11417
source JSTOR Open Access Journals
title Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_JFNAL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrologic%20connectivity%20determines%20dissolved%20organic%20matter%20biogeochemistry%20in%20northern%20high-latitude%20lakes&rft.jtitle=Limnology%20and%20oceanography&rft.au=Johnston,%20Sarah%20Ellen&rft.date=2020-08-01&rft.volume=65&rft.issue=8&rft.spage=1764&rft.epage=1780&rft.pages=1764-1780&rft.issn=0024-3590&rft.eissn=1939-5590&rft_id=info:doi/10.1002/lno.11417&rft_dat=%3Cjstor_JFNAL%3E26938155%3C/jstor_JFNAL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26938155&rfr_iscdi=true