Machine learning algorithms applied to R aman spectra for the identification of variscite originating from the mining complex of G avà
Variscite is an aluminium phosphate mineral widely used as a gemstone in antiquity. Knowledge of the ancient trade in variscite has important implications on the historical appreciation of the commercial and migratory movements of human population. The mining complex of Gavà, which dates from the Ne...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2020-09, Vol.51 (9), p.1563-1574 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1574 |
---|---|
container_issue | 9 |
container_start_page | 1563 |
container_title | Journal of Raman spectroscopy |
container_volume | 51 |
creator | Díez‐Pastor, José Francisco Jorge‐Villar, Susana Esther Arnaiz‐González, Álvar García‐Osorio, César Ignacio Díaz‐Acha, Yael Campeny, Marc Bosch, Josep Melgarejo, Joan Carles |
description | Variscite is an aluminium phosphate mineral widely used as a gemstone in antiquity. Knowledge of the ancient trade in variscite has important implications on the historical appreciation of the commercial and migratory movements of human population. The mining complex of Gavà, which dates from the Neolithic, is one of the oldest underground mine sites in Europe, from where variscite was extracted from several mines and at different depths, providing minerals with different properties and a range of colours. In this work, machine learning algorithms have been used to classify variscite samples from Gavà with regard to the identification of their mine of origin and extraction depth. The final objective of the study was to see if the Raman spectroscopic signatures selected by these algorithms had a key spectral significance related to mineral structure and/or composition and validate the use of these computational procedures as a useful tool for detecting variances in the mineral Raman spectra that could facilitate the assignment of the specimens to each mine. |
doi_str_mv | 10.1002/jrs.5509 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jrs_5509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_jrs_5509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c729-a283db229a07e2c51d62d6315d978180f9b643ecc818b5e3791b67426f9b38b3</originalsourceid><addsrcrecordid>eNotkF1KAzEUhYMoWKvgEvLoy9T8TJLJoxStQkVQ34c7maRNmZkMSSi6ArfhXtyY0-rT5XA434UPoWtKFpQQdruLaSEE0SdoRolWRSmEOEUzwpUqSFnJc3SR0o4QorWkM_T1DGbrB4s7C3HwwwZDtwnR522fMIxj522Lc8CvGHoYcBqtyRGwCxHnrcW-tUP2zhvIPgw4OLyH6JPx2eKJsvHDVExQF0N_HPT--MSEfuzsx2GwwrD_-b5EZw66ZK_-7xy9Pdy_Lx-L9cvqaXm3LoxiugBW8bZhTANRlhlBW8layalotapoRZxuZMmtMVNohOVK00aqksmp4FXD5-jmj2piSClaV4_R9xA_a0rqg7560lcf9PFfJ7FljQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning algorithms applied to R aman spectra for the identification of variscite originating from the mining complex of G avà</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Díez‐Pastor, José Francisco ; Jorge‐Villar, Susana Esther ; Arnaiz‐González, Álvar ; García‐Osorio, César Ignacio ; Díaz‐Acha, Yael ; Campeny, Marc ; Bosch, Josep ; Melgarejo, Joan Carles</creator><creatorcontrib>Díez‐Pastor, José Francisco ; Jorge‐Villar, Susana Esther ; Arnaiz‐González, Álvar ; García‐Osorio, César Ignacio ; Díaz‐Acha, Yael ; Campeny, Marc ; Bosch, Josep ; Melgarejo, Joan Carles</creatorcontrib><description>Variscite is an aluminium phosphate mineral widely used as a gemstone in antiquity. Knowledge of the ancient trade in variscite has important implications on the historical appreciation of the commercial and migratory movements of human population. The mining complex of Gavà, which dates from the Neolithic, is one of the oldest underground mine sites in Europe, from where variscite was extracted from several mines and at different depths, providing minerals with different properties and a range of colours. In this work, machine learning algorithms have been used to classify variscite samples from Gavà with regard to the identification of their mine of origin and extraction depth. The final objective of the study was to see if the Raman spectroscopic signatures selected by these algorithms had a key spectral significance related to mineral structure and/or composition and validate the use of these computational procedures as a useful tool for detecting variances in the mineral Raman spectra that could facilitate the assignment of the specimens to each mine.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5509</identifier><language>eng</language><ispartof>Journal of Raman spectroscopy, 2020-09, Vol.51 (9), p.1563-1574</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c729-a283db229a07e2c51d62d6315d978180f9b643ecc818b5e3791b67426f9b38b3</citedby><cites>FETCH-LOGICAL-c729-a283db229a07e2c51d62d6315d978180f9b643ecc818b5e3791b67426f9b38b3</cites><orcidid>0000-0003-1676-4438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Díez‐Pastor, José Francisco</creatorcontrib><creatorcontrib>Jorge‐Villar, Susana Esther</creatorcontrib><creatorcontrib>Arnaiz‐González, Álvar</creatorcontrib><creatorcontrib>García‐Osorio, César Ignacio</creatorcontrib><creatorcontrib>Díaz‐Acha, Yael</creatorcontrib><creatorcontrib>Campeny, Marc</creatorcontrib><creatorcontrib>Bosch, Josep</creatorcontrib><creatorcontrib>Melgarejo, Joan Carles</creatorcontrib><title>Machine learning algorithms applied to R aman spectra for the identification of variscite originating from the mining complex of G avà</title><title>Journal of Raman spectroscopy</title><description>Variscite is an aluminium phosphate mineral widely used as a gemstone in antiquity. Knowledge of the ancient trade in variscite has important implications on the historical appreciation of the commercial and migratory movements of human population. The mining complex of Gavà, which dates from the Neolithic, is one of the oldest underground mine sites in Europe, from where variscite was extracted from several mines and at different depths, providing minerals with different properties and a range of colours. In this work, machine learning algorithms have been used to classify variscite samples from Gavà with regard to the identification of their mine of origin and extraction depth. The final objective of the study was to see if the Raman spectroscopic signatures selected by these algorithms had a key spectral significance related to mineral structure and/or composition and validate the use of these computational procedures as a useful tool for detecting variances in the mineral Raman spectra that could facilitate the assignment of the specimens to each mine.</description><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkF1KAzEUhYMoWKvgEvLoy9T8TJLJoxStQkVQ34c7maRNmZkMSSi6ArfhXtyY0-rT5XA434UPoWtKFpQQdruLaSEE0SdoRolWRSmEOEUzwpUqSFnJc3SR0o4QorWkM_T1DGbrB4s7C3HwwwZDtwnR522fMIxj522Lc8CvGHoYcBqtyRGwCxHnrcW-tUP2zhvIPgw4OLyH6JPx2eKJsvHDVExQF0N_HPT--MSEfuzsx2GwwrD_-b5EZw66ZK_-7xy9Pdy_Lx-L9cvqaXm3LoxiugBW8bZhTANRlhlBW8layalotapoRZxuZMmtMVNohOVK00aqksmp4FXD5-jmj2piSClaV4_R9xA_a0rqg7560lcf9PFfJ7FljQ</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Díez‐Pastor, José Francisco</creator><creator>Jorge‐Villar, Susana Esther</creator><creator>Arnaiz‐González, Álvar</creator><creator>García‐Osorio, César Ignacio</creator><creator>Díaz‐Acha, Yael</creator><creator>Campeny, Marc</creator><creator>Bosch, Josep</creator><creator>Melgarejo, Joan Carles</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1676-4438</orcidid></search><sort><creationdate>202009</creationdate><title>Machine learning algorithms applied to R aman spectra for the identification of variscite originating from the mining complex of G avà</title><author>Díez‐Pastor, José Francisco ; Jorge‐Villar, Susana Esther ; Arnaiz‐González, Álvar ; García‐Osorio, César Ignacio ; Díaz‐Acha, Yael ; Campeny, Marc ; Bosch, Josep ; Melgarejo, Joan Carles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c729-a283db229a07e2c51d62d6315d978180f9b643ecc818b5e3791b67426f9b38b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díez‐Pastor, José Francisco</creatorcontrib><creatorcontrib>Jorge‐Villar, Susana Esther</creatorcontrib><creatorcontrib>Arnaiz‐González, Álvar</creatorcontrib><creatorcontrib>García‐Osorio, César Ignacio</creatorcontrib><creatorcontrib>Díaz‐Acha, Yael</creatorcontrib><creatorcontrib>Campeny, Marc</creatorcontrib><creatorcontrib>Bosch, Josep</creatorcontrib><creatorcontrib>Melgarejo, Joan Carles</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díez‐Pastor, José Francisco</au><au>Jorge‐Villar, Susana Esther</au><au>Arnaiz‐González, Álvar</au><au>García‐Osorio, César Ignacio</au><au>Díaz‐Acha, Yael</au><au>Campeny, Marc</au><au>Bosch, Josep</au><au>Melgarejo, Joan Carles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning algorithms applied to R aman spectra for the identification of variscite originating from the mining complex of G avà</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2020-09</date><risdate>2020</risdate><volume>51</volume><issue>9</issue><spage>1563</spage><epage>1574</epage><pages>1563-1574</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Variscite is an aluminium phosphate mineral widely used as a gemstone in antiquity. Knowledge of the ancient trade in variscite has important implications on the historical appreciation of the commercial and migratory movements of human population. The mining complex of Gavà, which dates from the Neolithic, is one of the oldest underground mine sites in Europe, from where variscite was extracted from several mines and at different depths, providing minerals with different properties and a range of colours. In this work, machine learning algorithms have been used to classify variscite samples from Gavà with regard to the identification of their mine of origin and extraction depth. The final objective of the study was to see if the Raman spectroscopic signatures selected by these algorithms had a key spectral significance related to mineral structure and/or composition and validate the use of these computational procedures as a useful tool for detecting variances in the mineral Raman spectra that could facilitate the assignment of the specimens to each mine.</abstract><doi>10.1002/jrs.5509</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1676-4438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0486 |
ispartof | Journal of Raman spectroscopy, 2020-09, Vol.51 (9), p.1563-1574 |
issn | 0377-0486 1097-4555 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jrs_5509 |
source | Wiley Online Library Journals Frontfile Complete |
title | Machine learning algorithms applied to R aman spectra for the identification of variscite originating from the mining complex of G avà |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20algorithms%20applied%20to%20R%20aman%20spectra%20for%20the%20identification%20of%20variscite%20originating%20from%20the%20mining%20complex%20of%20G%20av%C3%A0&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=D%C3%ADez%E2%80%90Pastor,%20Jos%C3%A9%20Francisco&rft.date=2020-09&rft.volume=51&rft.issue=9&rft.spage=1563&rft.epage=1574&rft.pages=1563-1574&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5509&rft_dat=%3Ccrossref%3E10_1002_jrs_5509%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |