Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons

We investigated the mechanosensitivity of voltage‐gated K+ channel (VGPC) currents by using whole‐cell patch clamp recording in rat trigeminal ganglion (TG) neurons. On the basis of biophysical and pharmacological properties, two types of VGPC currents were isolated. One was transient (IK,A), the ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2006-05, Vol.83 (7), p.1373-1380
Hauptverfasser: Piao, Lin, Ying Li, Hai, Park, Chul-Kyu, Cho, Ik-Hyun, Piao, Zheng Gen, Jung, Sung Jun, Choi, Se-Young, Lee, Sung Joong, Park, Kyungpyo, Kim, Joong-Soo, Oh, Seog Bae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1380
container_issue 7
container_start_page 1373
container_title Journal of neuroscience research
container_volume 83
creator Piao, Lin
Ying Li, Hai
Park, Chul-Kyu
Cho, Ik-Hyun
Piao, Zheng Gen
Jung, Sung Jun
Choi, Se-Young
Lee, Sung Joong
Park, Kyungpyo
Kim, Joong-Soo
Oh, Seog Bae
description We investigated the mechanosensitivity of voltage‐gated K+ channel (VGPC) currents by using whole‐cell patch clamp recording in rat trigeminal ganglion (TG) neurons. On the basis of biophysical and pharmacological properties, two types of VGPC currents were isolated. One was transient (IK,A), the other sustained (IK,V). Hypotonic stimulation (200 mOsm) markedly increased both IK,A and IK,V without affecting their activation and inactivation kinetics. Gadolinium, a well‐known blocker of mechanosensitive channels, failed to block the enhancement of IK,A and IK,V induced by hypotonic stimulation. During hypotonic stimulation, cytochalasin D, an actin‐based cytoskeletal disruptor, further increased IK,A and IK,V, whereas phalloidin, an actin‐based cytoskeletal stabilizer, reduced IK,A and IK,V. Confocal imaging with Texas red‐phalloidin showed that actin‐based cytoskeleton was disrupted by hypotonic stimulation, which was similar to the effect of cytochalasin D. Our results suggest that both IK,A and IK,V are mechanosensitive and that actin‐based cytoskeleton is likely to regulate the mechanosensitivity of VGPC currents in TG neurons. © 2006 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jnr.20810
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jnr_20810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JNR20810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4270-49831c3daa4571ce926cab7c63f845d06a790d616910e8e51b607f6f19172d3c3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EouUx8AeQV4QC13FixyMqUB6lSBUPicVyHSe4pA6yXaD_nkILTEx3Od_R1UFoj8ARAUiPJ84fpVAQWENdAoInWZ7xddQFyiDJgKQdtBXCBACEyOkm6hCWCcoK3kWjG6OflWuDccFG-2bjHLcVfmubqGqT1CqaEl8fYj3z3rgYsHXYq4ijt7WZWqcaXCtXN7Z12JmZb13YQRuVaoLZXd1tdH9-dte7SAa3_cveySDRWcoXf4mCEk1LpbKcE21EyrQac81oVWR5CUxxASUjTBAwhcnJmAGvWEUE4WlJNd1GB0uv9m0I3lTy1dup8nNJQH51kYsu8rvLgt1fsq-z8dSUf-QqxAI4XgLvtjHz_03yajj6USbLhQ3RfPwulH-RjFOey8dhXz4O-qe9h6ehvKGfuUJ8RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Piao, Lin ; Ying Li, Hai ; Park, Chul-Kyu ; Cho, Ik-Hyun ; Piao, Zheng Gen ; Jung, Sung Jun ; Choi, Se-Young ; Lee, Sung Joong ; Park, Kyungpyo ; Kim, Joong-Soo ; Oh, Seog Bae</creator><creatorcontrib>Piao, Lin ; Ying Li, Hai ; Park, Chul-Kyu ; Cho, Ik-Hyun ; Piao, Zheng Gen ; Jung, Sung Jun ; Choi, Se-Young ; Lee, Sung Joong ; Park, Kyungpyo ; Kim, Joong-Soo ; Oh, Seog Bae</creatorcontrib><description>We investigated the mechanosensitivity of voltage‐gated K+ channel (VGPC) currents by using whole‐cell patch clamp recording in rat trigeminal ganglion (TG) neurons. On the basis of biophysical and pharmacological properties, two types of VGPC currents were isolated. One was transient (IK,A), the other sustained (IK,V). Hypotonic stimulation (200 mOsm) markedly increased both IK,A and IK,V without affecting their activation and inactivation kinetics. Gadolinium, a well‐known blocker of mechanosensitive channels, failed to block the enhancement of IK,A and IK,V induced by hypotonic stimulation. During hypotonic stimulation, cytochalasin D, an actin‐based cytoskeletal disruptor, further increased IK,A and IK,V, whereas phalloidin, an actin‐based cytoskeletal stabilizer, reduced IK,A and IK,V. Confocal imaging with Texas red‐phalloidin showed that actin‐based cytoskeleton was disrupted by hypotonic stimulation, which was similar to the effect of cytochalasin D. Our results suggest that both IK,A and IK,V are mechanosensitive and that actin‐based cytoskeleton is likely to regulate the mechanosensitivity of VGPC currents in TG neurons. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.20810</identifier><identifier>PMID: 16493687</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>actin ; Actin Cytoskeleton - drug effects ; Actin Cytoskeleton - metabolism ; Animals ; Animals, Newborn ; Cells, Cultured ; Cytochalasin D - pharmacology ; cytoskeleton ; Hypotonic Solutions - pharmacology ; hypotonic stimulation ; Mechanoreceptors - metabolism ; mechanosensitivity ; Mechanotransduction, Cellular - drug effects ; Mechanotransduction, Cellular - physiology ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Microscopy, Confocal ; Neurons, Afferent - cytology ; Neurons, Afferent - drug effects ; Neurons, Afferent - metabolism ; Nucleic Acid Synthesis Inhibitors - pharmacology ; Patch-Clamp Techniques ; Phalloidine - pharmacology ; Potassium Channel Blockers - pharmacology ; Potassium Channels, Voltage-Gated - drug effects ; Potassium Channels, Voltage-Gated - metabolism ; Rats ; Rats, Sprague-Dawley ; Trigeminal Ganglion - cytology ; Trigeminal Ganglion - drug effects ; Trigeminal Ganglion - metabolism ; trigeminal ganglion neuron ; voltage-gated K+ currents ; Xanthenes</subject><ispartof>Journal of neuroscience research, 2006-05, Vol.83 (7), p.1373-1380</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>Copyright 2006 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4270-49831c3daa4571ce926cab7c63f845d06a790d616910e8e51b607f6f19172d3c3</citedby><cites>FETCH-LOGICAL-c4270-49831c3daa4571ce926cab7c63f845d06a790d616910e8e51b607f6f19172d3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.20810$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.20810$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16493687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piao, Lin</creatorcontrib><creatorcontrib>Ying Li, Hai</creatorcontrib><creatorcontrib>Park, Chul-Kyu</creatorcontrib><creatorcontrib>Cho, Ik-Hyun</creatorcontrib><creatorcontrib>Piao, Zheng Gen</creatorcontrib><creatorcontrib>Jung, Sung Jun</creatorcontrib><creatorcontrib>Choi, Se-Young</creatorcontrib><creatorcontrib>Lee, Sung Joong</creatorcontrib><creatorcontrib>Park, Kyungpyo</creatorcontrib><creatorcontrib>Kim, Joong-Soo</creatorcontrib><creatorcontrib>Oh, Seog Bae</creatorcontrib><title>Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>We investigated the mechanosensitivity of voltage‐gated K+ channel (VGPC) currents by using whole‐cell patch clamp recording in rat trigeminal ganglion (TG) neurons. On the basis of biophysical and pharmacological properties, two types of VGPC currents were isolated. One was transient (IK,A), the other sustained (IK,V). Hypotonic stimulation (200 mOsm) markedly increased both IK,A and IK,V without affecting their activation and inactivation kinetics. Gadolinium, a well‐known blocker of mechanosensitive channels, failed to block the enhancement of IK,A and IK,V induced by hypotonic stimulation. During hypotonic stimulation, cytochalasin D, an actin‐based cytoskeletal disruptor, further increased IK,A and IK,V, whereas phalloidin, an actin‐based cytoskeletal stabilizer, reduced IK,A and IK,V. Confocal imaging with Texas red‐phalloidin showed that actin‐based cytoskeleton was disrupted by hypotonic stimulation, which was similar to the effect of cytochalasin D. Our results suggest that both IK,A and IK,V are mechanosensitive and that actin‐based cytoskeleton is likely to regulate the mechanosensitivity of VGPC currents in TG neurons. © 2006 Wiley‐Liss, Inc.</description><subject>actin</subject><subject>Actin Cytoskeleton - drug effects</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cells, Cultured</subject><subject>Cytochalasin D - pharmacology</subject><subject>cytoskeleton</subject><subject>Hypotonic Solutions - pharmacology</subject><subject>hypotonic stimulation</subject><subject>Mechanoreceptors - metabolism</subject><subject>mechanosensitivity</subject><subject>Mechanotransduction, Cellular - drug effects</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Microscopy, Confocal</subject><subject>Neurons, Afferent - cytology</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurons, Afferent - metabolism</subject><subject>Nucleic Acid Synthesis Inhibitors - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>Phalloidine - pharmacology</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Potassium Channels, Voltage-Gated - drug effects</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Trigeminal Ganglion - cytology</subject><subject>Trigeminal Ganglion - drug effects</subject><subject>Trigeminal Ganglion - metabolism</subject><subject>trigeminal ganglion neuron</subject><subject>voltage-gated K+ currents</subject><subject>Xanthenes</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAURi0EouUx8AeQV4QC13FixyMqUB6lSBUPicVyHSe4pA6yXaD_nkILTEx3Od_R1UFoj8ARAUiPJ84fpVAQWENdAoInWZ7xddQFyiDJgKQdtBXCBACEyOkm6hCWCcoK3kWjG6OflWuDccFG-2bjHLcVfmubqGqT1CqaEl8fYj3z3rgYsHXYq4ijt7WZWqcaXCtXN7Z12JmZb13YQRuVaoLZXd1tdH9-dte7SAa3_cveySDRWcoXf4mCEk1LpbKcE21EyrQac81oVWR5CUxxASUjTBAwhcnJmAGvWEUE4WlJNd1GB0uv9m0I3lTy1dup8nNJQH51kYsu8rvLgt1fsq-z8dSUf-QqxAI4XgLvtjHz_03yajj6USbLhQ3RfPwulH-RjFOey8dhXz4O-qe9h6ehvKGfuUJ8RQ</recordid><startdate>20060515</startdate><enddate>20060515</enddate><creator>Piao, Lin</creator><creator>Ying Li, Hai</creator><creator>Park, Chul-Kyu</creator><creator>Cho, Ik-Hyun</creator><creator>Piao, Zheng Gen</creator><creator>Jung, Sung Jun</creator><creator>Choi, Se-Young</creator><creator>Lee, Sung Joong</creator><creator>Park, Kyungpyo</creator><creator>Kim, Joong-Soo</creator><creator>Oh, Seog Bae</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060515</creationdate><title>Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons</title><author>Piao, Lin ; Ying Li, Hai ; Park, Chul-Kyu ; Cho, Ik-Hyun ; Piao, Zheng Gen ; Jung, Sung Jun ; Choi, Se-Young ; Lee, Sung Joong ; Park, Kyungpyo ; Kim, Joong-Soo ; Oh, Seog Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4270-49831c3daa4571ce926cab7c63f845d06a790d616910e8e51b607f6f19172d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>actin</topic><topic>Actin Cytoskeleton - drug effects</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cells, Cultured</topic><topic>Cytochalasin D - pharmacology</topic><topic>cytoskeleton</topic><topic>Hypotonic Solutions - pharmacology</topic><topic>hypotonic stimulation</topic><topic>Mechanoreceptors - metabolism</topic><topic>mechanosensitivity</topic><topic>Mechanotransduction, Cellular - drug effects</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Microscopy, Confocal</topic><topic>Neurons, Afferent - cytology</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurons, Afferent - metabolism</topic><topic>Nucleic Acid Synthesis Inhibitors - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>Phalloidine - pharmacology</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Potassium Channels, Voltage-Gated - drug effects</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Trigeminal Ganglion - cytology</topic><topic>Trigeminal Ganglion - drug effects</topic><topic>Trigeminal Ganglion - metabolism</topic><topic>trigeminal ganglion neuron</topic><topic>voltage-gated K+ currents</topic><topic>Xanthenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piao, Lin</creatorcontrib><creatorcontrib>Ying Li, Hai</creatorcontrib><creatorcontrib>Park, Chul-Kyu</creatorcontrib><creatorcontrib>Cho, Ik-Hyun</creatorcontrib><creatorcontrib>Piao, Zheng Gen</creatorcontrib><creatorcontrib>Jung, Sung Jun</creatorcontrib><creatorcontrib>Choi, Se-Young</creatorcontrib><creatorcontrib>Lee, Sung Joong</creatorcontrib><creatorcontrib>Park, Kyungpyo</creatorcontrib><creatorcontrib>Kim, Joong-Soo</creatorcontrib><creatorcontrib>Oh, Seog Bae</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piao, Lin</au><au>Ying Li, Hai</au><au>Park, Chul-Kyu</au><au>Cho, Ik-Hyun</au><au>Piao, Zheng Gen</au><au>Jung, Sung Jun</au><au>Choi, Se-Young</au><au>Lee, Sung Joong</au><au>Park, Kyungpyo</au><au>Kim, Joong-Soo</au><au>Oh, Seog Bae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2006-05-15</date><risdate>2006</risdate><volume>83</volume><issue>7</issue><spage>1373</spage><epage>1380</epage><pages>1373-1380</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>We investigated the mechanosensitivity of voltage‐gated K+ channel (VGPC) currents by using whole‐cell patch clamp recording in rat trigeminal ganglion (TG) neurons. On the basis of biophysical and pharmacological properties, two types of VGPC currents were isolated. One was transient (IK,A), the other sustained (IK,V). Hypotonic stimulation (200 mOsm) markedly increased both IK,A and IK,V without affecting their activation and inactivation kinetics. Gadolinium, a well‐known blocker of mechanosensitive channels, failed to block the enhancement of IK,A and IK,V induced by hypotonic stimulation. During hypotonic stimulation, cytochalasin D, an actin‐based cytoskeletal disruptor, further increased IK,A and IK,V, whereas phalloidin, an actin‐based cytoskeletal stabilizer, reduced IK,A and IK,V. Confocal imaging with Texas red‐phalloidin showed that actin‐based cytoskeleton was disrupted by hypotonic stimulation, which was similar to the effect of cytochalasin D. Our results suggest that both IK,A and IK,V are mechanosensitive and that actin‐based cytoskeleton is likely to regulate the mechanosensitivity of VGPC currents in TG neurons. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16493687</pmid><doi>10.1002/jnr.20810</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2006-05, Vol.83 (7), p.1373-1380
issn 0360-4012
1097-4547
language eng
recordid cdi_crossref_primary_10_1002_jnr_20810
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects actin
Actin Cytoskeleton - drug effects
Actin Cytoskeleton - metabolism
Animals
Animals, Newborn
Cells, Cultured
Cytochalasin D - pharmacology
cytoskeleton
Hypotonic Solutions - pharmacology
hypotonic stimulation
Mechanoreceptors - metabolism
mechanosensitivity
Mechanotransduction, Cellular - drug effects
Mechanotransduction, Cellular - physiology
Membrane Potentials - drug effects
Membrane Potentials - physiology
Microscopy, Confocal
Neurons, Afferent - cytology
Neurons, Afferent - drug effects
Neurons, Afferent - metabolism
Nucleic Acid Synthesis Inhibitors - pharmacology
Patch-Clamp Techniques
Phalloidine - pharmacology
Potassium Channel Blockers - pharmacology
Potassium Channels, Voltage-Gated - drug effects
Potassium Channels, Voltage-Gated - metabolism
Rats
Rats, Sprague-Dawley
Trigeminal Ganglion - cytology
Trigeminal Ganglion - drug effects
Trigeminal Ganglion - metabolism
trigeminal ganglion neuron
voltage-gated K+ currents
Xanthenes
title Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanosensitivity%20of%20voltage-gated%20K+%20currents%20in%20rat%20trigeminal%20ganglion%20neurons&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Piao,%20Lin&rft.date=2006-05-15&rft.volume=83&rft.issue=7&rft.spage=1373&rft.epage=1380&rft.pages=1373-1380&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.20810&rft_dat=%3Cwiley_cross%3EJNR20810%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16493687&rfr_iscdi=true