On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water
An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing...
Gespeichert in:
Veröffentlicht in: | Journal of high resolution chromatography 1996-12, Vol.19 (12), p.679-685 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 12 |
container_start_page | 679 |
container_title | Journal of high resolution chromatography |
container_volume | 19 |
creator | Louter, Arjan J. H. Van Doornmalen, Jacco Vreuls, Jolan J. Brinkman, Udo A. Th |
description | An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown. |
doi_str_mv | 10.1002/jhrc.1240191205 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jhrc_1240191205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JHRC1240191205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVpodsk51x16NWJZFn-Q0_t0mRblgSahRzFWDuKldqSkQQbf59-0CrZktJTTwNv3u_N8Ag55-yCM1ZePg5BX_CyYrzjJZNvyIrLkhcVr9u3ZMU6IYtasOo9-RDjI2Os6yq-Ir9uXTFahzT60e6LeYCIFJ9SAJ2sd0UaMEww0j1GH-YX6QEi1UPwEyT_EGAeFnqwaaB5RzM3Z2_CF5omcHuc6AQx0jhnMVOYwkKNDzRHU3AwLtFG6g2drA5ee5dgsg5citQ6eoCE4ZS8MzBGPPszT8ju6utuvSm2t9ff1p-3hRaylUUjDPA-N9BWTc2Rl7KuuNAgeGdMJ-q-FC3uOwbYVthy0yOYvum1kS20aMQJuTzG5j9iDGjUHOwEYVGcqeeO1XPH6m_Hmfh4JGaIGkYTwGkbX7FSllVXsmz7dLQd7IjL_1LV982P9T9HiiNtY8KnVxrCT1U3opHq_uZa3TWb3f32Tqov4jc2v6Mk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Louter, Arjan J. H. ; Van Doornmalen, Jacco ; Vreuls, Jolan J. ; Brinkman, Udo A. Th</creator><creatorcontrib>Louter, Arjan J. H. ; Van Doornmalen, Jacco ; Vreuls, Jolan J. ; Brinkman, Udo A. Th</creatorcontrib><description>An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown.</description><identifier>ISSN: 0935-6304</identifier><identifier>EISSN: 1521-4168</identifier><identifier>DOI: 10.1002/jhrc.1240191205</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analysis methods ; Analytical chemistry ; Applied sciences ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Gas chromatographic methods ; Gas chromatography ; Ion trap detection ; Microcontaminants ; Natural water pollution ; Pollution ; Solid-phase extraction-thermal desorption ; Tandem mass spectrometry ; Water samples ; Water treatment and pollution</subject><ispartof>Journal of high resolution chromatography, 1996-12, Vol.19 (12), p.679-685</ispartof><rights>Copyright © 1996 Hüthig GmbH</rights><rights>1997 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</citedby><cites>FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjhrc.1240191205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjhrc.1240191205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2524920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Louter, Arjan J. H.</creatorcontrib><creatorcontrib>Van Doornmalen, Jacco</creatorcontrib><creatorcontrib>Vreuls, Jolan J.</creatorcontrib><creatorcontrib>Brinkman, Udo A. Th</creatorcontrib><title>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</title><title>Journal of high resolution chromatography</title><addtitle>J. High Resol. Chromatogr</addtitle><description>An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown.</description><subject>Analysis methods</subject><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Gas chromatographic methods</subject><subject>Gas chromatography</subject><subject>Ion trap detection</subject><subject>Microcontaminants</subject><subject>Natural water pollution</subject><subject>Pollution</subject><subject>Solid-phase extraction-thermal desorption</subject><subject>Tandem mass spectrometry</subject><subject>Water samples</subject><subject>Water treatment and pollution</subject><issn>0935-6304</issn><issn>1521-4168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVpodsk51x16NWJZFn-Q0_t0mRblgSahRzFWDuKldqSkQQbf59-0CrZktJTTwNv3u_N8Ag55-yCM1ZePg5BX_CyYrzjJZNvyIrLkhcVr9u3ZMU6IYtasOo9-RDjI2Os6yq-Ir9uXTFahzT60e6LeYCIFJ9SAJ2sd0UaMEww0j1GH-YX6QEi1UPwEyT_EGAeFnqwaaB5RzM3Z2_CF5omcHuc6AQx0jhnMVOYwkKNDzRHU3AwLtFG6g2drA5ee5dgsg5citQ6eoCE4ZS8MzBGPPszT8ju6utuvSm2t9ff1p-3hRaylUUjDPA-N9BWTc2Rl7KuuNAgeGdMJ-q-FC3uOwbYVthy0yOYvum1kS20aMQJuTzG5j9iDGjUHOwEYVGcqeeO1XPH6m_Hmfh4JGaIGkYTwGkbX7FSllVXsmz7dLQd7IjL_1LV982P9T9HiiNtY8KnVxrCT1U3opHq_uZa3TWb3f32Tqov4jc2v6Mk</recordid><startdate>199612</startdate><enddate>199612</enddate><creator>Louter, Arjan J. H.</creator><creator>Van Doornmalen, Jacco</creator><creator>Vreuls, Jolan J.</creator><creator>Brinkman, Udo A. Th</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199612</creationdate><title>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</title><author>Louter, Arjan J. H. ; Van Doornmalen, Jacco ; Vreuls, Jolan J. ; Brinkman, Udo A. Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Analysis methods</topic><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Gas chromatographic methods</topic><topic>Gas chromatography</topic><topic>Ion trap detection</topic><topic>Microcontaminants</topic><topic>Natural water pollution</topic><topic>Pollution</topic><topic>Solid-phase extraction-thermal desorption</topic><topic>Tandem mass spectrometry</topic><topic>Water samples</topic><topic>Water treatment and pollution</topic><toplevel>online_resources</toplevel><creatorcontrib>Louter, Arjan J. H.</creatorcontrib><creatorcontrib>Van Doornmalen, Jacco</creatorcontrib><creatorcontrib>Vreuls, Jolan J.</creatorcontrib><creatorcontrib>Brinkman, Udo A. Th</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of high resolution chromatography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louter, Arjan J. H.</au><au>Van Doornmalen, Jacco</au><au>Vreuls, Jolan J.</au><au>Brinkman, Udo A. Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</atitle><jtitle>Journal of high resolution chromatography</jtitle><addtitle>J. High Resol. Chromatogr</addtitle><date>1996-12</date><risdate>1996</risdate><volume>19</volume><issue>12</issue><spage>679</spage><epage>685</epage><pages>679-685</pages><issn>0935-6304</issn><eissn>1521-4168</eissn><abstract>An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jhrc.1240191205</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-6304 |
ispartof | Journal of high resolution chromatography, 1996-12, Vol.19 (12), p.679-685 |
issn | 0935-6304 1521-4168 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jhrc_1240191205 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analysis methods Analytical chemistry Applied sciences Chemistry Chromatographic methods and physical methods associated with chromatography Exact sciences and technology Gas chromatographic methods Gas chromatography Ion trap detection Microcontaminants Natural water pollution Pollution Solid-phase extraction-thermal desorption Tandem mass spectrometry Water samples Water treatment and pollution |
title | On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-line%20solid-phase%20extraction-thermal%20desorption-gas%20chromatography%20with%20ion%20trap%20detection%20tandem%20mass%20spectrometry%20for%20the%20analysis%20of%20microcontaminants%20in%20water&rft.jtitle=Journal%20of%20high%20resolution%20chromatography&rft.au=Louter,%20Arjan%20J.%20H.&rft.date=1996-12&rft.volume=19&rft.issue=12&rft.spage=679&rft.epage=685&rft.pages=679-685&rft.issn=0935-6304&rft.eissn=1521-4168&rft_id=info:doi/10.1002/jhrc.1240191205&rft_dat=%3Cwiley_cross%3EJHRC1240191205%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |