On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water

An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of high resolution chromatography 1996-12, Vol.19 (12), p.679-685
Hauptverfasser: Louter, Arjan J. H., Van Doornmalen, Jacco, Vreuls, Jolan J., Brinkman, Udo A. Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 12
container_start_page 679
container_title Journal of high resolution chromatography
container_volume 19
creator Louter, Arjan J. H.
Van Doornmalen, Jacco
Vreuls, Jolan J.
Brinkman, Udo A. Th
description An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown.
doi_str_mv 10.1002/jhrc.1240191205
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jhrc_1240191205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JHRC1240191205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVpodsk51x16NWJZFn-Q0_t0mRblgSahRzFWDuKldqSkQQbf59-0CrZktJTTwNv3u_N8Ag55-yCM1ZePg5BX_CyYrzjJZNvyIrLkhcVr9u3ZMU6IYtasOo9-RDjI2Os6yq-Ir9uXTFahzT60e6LeYCIFJ9SAJ2sd0UaMEww0j1GH-YX6QEi1UPwEyT_EGAeFnqwaaB5RzM3Z2_CF5omcHuc6AQx0jhnMVOYwkKNDzRHU3AwLtFG6g2drA5ee5dgsg5citQ6eoCE4ZS8MzBGPPszT8ju6utuvSm2t9ff1p-3hRaylUUjDPA-N9BWTc2Rl7KuuNAgeGdMJ-q-FC3uOwbYVthy0yOYvum1kS20aMQJuTzG5j9iDGjUHOwEYVGcqeeO1XPH6m_Hmfh4JGaIGkYTwGkbX7FSllVXsmz7dLQd7IjL_1LV982P9T9HiiNtY8KnVxrCT1U3opHq_uZa3TWb3f32Tqov4jc2v6Mk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Louter, Arjan J. H. ; Van Doornmalen, Jacco ; Vreuls, Jolan J. ; Brinkman, Udo A. Th</creator><creatorcontrib>Louter, Arjan J. H. ; Van Doornmalen, Jacco ; Vreuls, Jolan J. ; Brinkman, Udo A. Th</creatorcontrib><description>An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown.</description><identifier>ISSN: 0935-6304</identifier><identifier>EISSN: 1521-4168</identifier><identifier>DOI: 10.1002/jhrc.1240191205</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analysis methods ; Analytical chemistry ; Applied sciences ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Gas chromatographic methods ; Gas chromatography ; Ion trap detection ; Microcontaminants ; Natural water pollution ; Pollution ; Solid-phase extraction-thermal desorption ; Tandem mass spectrometry ; Water samples ; Water treatment and pollution</subject><ispartof>Journal of high resolution chromatography, 1996-12, Vol.19 (12), p.679-685</ispartof><rights>Copyright © 1996 Hüthig GmbH</rights><rights>1997 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</citedby><cites>FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjhrc.1240191205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjhrc.1240191205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2524920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Louter, Arjan J. H.</creatorcontrib><creatorcontrib>Van Doornmalen, Jacco</creatorcontrib><creatorcontrib>Vreuls, Jolan J.</creatorcontrib><creatorcontrib>Brinkman, Udo A. Th</creatorcontrib><title>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</title><title>Journal of high resolution chromatography</title><addtitle>J. High Resol. Chromatogr</addtitle><description>An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown.</description><subject>Analysis methods</subject><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Gas chromatographic methods</subject><subject>Gas chromatography</subject><subject>Ion trap detection</subject><subject>Microcontaminants</subject><subject>Natural water pollution</subject><subject>Pollution</subject><subject>Solid-phase extraction-thermal desorption</subject><subject>Tandem mass spectrometry</subject><subject>Water samples</subject><subject>Water treatment and pollution</subject><issn>0935-6304</issn><issn>1521-4168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVpodsk51x16NWJZFn-Q0_t0mRblgSahRzFWDuKldqSkQQbf59-0CrZktJTTwNv3u_N8Ag55-yCM1ZePg5BX_CyYrzjJZNvyIrLkhcVr9u3ZMU6IYtasOo9-RDjI2Os6yq-Ir9uXTFahzT60e6LeYCIFJ9SAJ2sd0UaMEww0j1GH-YX6QEi1UPwEyT_EGAeFnqwaaB5RzM3Z2_CF5omcHuc6AQx0jhnMVOYwkKNDzRHU3AwLtFG6g2drA5ee5dgsg5citQ6eoCE4ZS8MzBGPPszT8ju6utuvSm2t9ff1p-3hRaylUUjDPA-N9BWTc2Rl7KuuNAgeGdMJ-q-FC3uOwbYVthy0yOYvum1kS20aMQJuTzG5j9iDGjUHOwEYVGcqeeO1XPH6m_Hmfh4JGaIGkYTwGkbX7FSllVXsmz7dLQd7IjL_1LV982P9T9HiiNtY8KnVxrCT1U3opHq_uZa3TWb3f32Tqov4jc2v6Mk</recordid><startdate>199612</startdate><enddate>199612</enddate><creator>Louter, Arjan J. H.</creator><creator>Van Doornmalen, Jacco</creator><creator>Vreuls, Jolan J.</creator><creator>Brinkman, Udo A. Th</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199612</creationdate><title>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</title><author>Louter, Arjan J. H. ; Van Doornmalen, Jacco ; Vreuls, Jolan J. ; Brinkman, Udo A. Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3585-73fa1b24084761e1256413ca319ff936b238ed90ae84e81fbeafb7bcf58a8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Analysis methods</topic><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Gas chromatographic methods</topic><topic>Gas chromatography</topic><topic>Ion trap detection</topic><topic>Microcontaminants</topic><topic>Natural water pollution</topic><topic>Pollution</topic><topic>Solid-phase extraction-thermal desorption</topic><topic>Tandem mass spectrometry</topic><topic>Water samples</topic><topic>Water treatment and pollution</topic><toplevel>online_resources</toplevel><creatorcontrib>Louter, Arjan J. H.</creatorcontrib><creatorcontrib>Van Doornmalen, Jacco</creatorcontrib><creatorcontrib>Vreuls, Jolan J.</creatorcontrib><creatorcontrib>Brinkman, Udo A. Th</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of high resolution chromatography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louter, Arjan J. H.</au><au>Van Doornmalen, Jacco</au><au>Vreuls, Jolan J.</au><au>Brinkman, Udo A. Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water</atitle><jtitle>Journal of high resolution chromatography</jtitle><addtitle>J. High Resol. Chromatogr</addtitle><date>1996-12</date><risdate>1996</risdate><volume>19</volume><issue>12</issue><spage>679</spage><epage>685</epage><pages>679-685</pages><issn>0935-6304</issn><eissn>1521-4168</eissn><abstract>An improved set‐up for solid‐phase extraction with thermal desorption coupled on‐line to gas chromatography (SPETD‐GC) is presented. It includes a newly designed liner for a programmable temperature vaporizer (PTV) and an improved water elimination system. The SPETD procedure now includes a washing step with HPLC‐grade water to prevent degradation of analytes due to interaction with remaining sample constituents. The system was used to analyze surface and tap water samples over a 4‐month period. No decrease of chromatographic or trace‐enrichment performance was observed, and a liner packed with Tenax GR could be used for at least 150 analyses. The SPETD module was coupled to GC with ion‐trap detection for mass spectrometric (MS) and MS/MS detection. The linearity and repeatability of the procedure for several pesticides which were tested in the 0.5–10 μg/1 range were fully satisfactory (1 μg/1, RSD range 5–11%; n = 5). When using sample volumes of 0.1 ml only, detection limits were as low as 0. 1‐0.2 μg/1. As an example, the confirmation and quantification of a suspected pesticide in a real‐life sample using electron impact and positive chemical ionization in both the MS and MS/MS mode is shown.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jhrc.1240191205</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-6304
ispartof Journal of high resolution chromatography, 1996-12, Vol.19 (12), p.679-685
issn 0935-6304
1521-4168
language eng
recordid cdi_crossref_primary_10_1002_jhrc_1240191205
source Wiley Online Library Journals Frontfile Complete
subjects Analysis methods
Analytical chemistry
Applied sciences
Chemistry
Chromatographic methods and physical methods associated with chromatography
Exact sciences and technology
Gas chromatographic methods
Gas chromatography
Ion trap detection
Microcontaminants
Natural water pollution
Pollution
Solid-phase extraction-thermal desorption
Tandem mass spectrometry
Water samples
Water treatment and pollution
title On-line solid-phase extraction-thermal desorption-gas chromatography with ion trap detection tandem mass spectrometry for the analysis of microcontaminants in water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-line%20solid-phase%20extraction-thermal%20desorption-gas%20chromatography%20with%20ion%20trap%20detection%20tandem%20mass%20spectrometry%20for%20the%20analysis%20of%20microcontaminants%20in%20water&rft.jtitle=Journal%20of%20high%20resolution%20chromatography&rft.au=Louter,%20Arjan%20J.%20H.&rft.date=1996-12&rft.volume=19&rft.issue=12&rft.spage=679&rft.epage=685&rft.pages=679-685&rft.issn=0935-6304&rft.eissn=1521-4168&rft_id=info:doi/10.1002/jhrc.1240191205&rft_dat=%3Cwiley_cross%3EJHRC1240191205%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true